## Exercises

## Unconstrained Optimization

Consider the following function

$$
f(x)=x^{2}+3 x-5
$$

What is the smallest value of $f$ for all $x$ ? This is an unconstrained optimization problem. Plot this function and from the plot estimate what the minimum and maximum values for the function in the range x in $[-6,4]$.

Using the decision tree in the Chapter E04 introduction find a suitable routine to find the minimum and maximum. Is the solution what you expect from your original estimate? Add the solution to the plot with suitable text.

## Constrained Optimization

Consider the following function

$$
f(x)=\sin \left(3 y-x^{2}+1\right)+\cos \left(2 y^{2}-2 x\right)
$$

Subject to the following constraints:

$$
-2<x<1,-1<y<1
$$

Make a contour plot of the function and constraints, and estimate the minimum and maximum. Using the decision tree in the Chapter E04 introduction, find a suitable routine to solve this problem. How does the starting point vary the solution? Do you always get the correct one?

## Using Gradients

The derivatives of $f(x)$ are:

$$
\begin{gathered}
\partial f / \partial x=2\left(\sin \left(2 y^{2}-2 x\right)-x \cos \left(3 y-x^{2}+1\right)\right) \\
\partial f / \partial y=3 \cos \left(3 y-x^{2}+1\right)-4 y\left(\sin \left(2 y^{2}-2 x\right)\right)
\end{gathered}
$$

Now solve the problem again using an appropriate routine. Is there a performance advantage? How does the time to solution vary with the starting point?

Pay attention to any error messages.

