NAG Toolbox for MATLAB

Implied Volatility Exercise

Question 1

Write a function bs which takes the following inputs:

$$
\begin{array}{lll}
\text { S: the initial stock price } & \mathrm{K}: \text { the strike price } & \mathrm{T}: \text { the maturity } \\
\mathrm{r}: \text { the interest rate } & \mathrm{q}: \text { the dividend rate } & \text { sigma: the volatility }
\end{array}
$$

The function bs should call NAG function nag_specfun_opt_bsm_price (s30aa) to return the price of a simple European call option. Use your function to price a call option with the following parameters:

$$
\begin{array}{lll}
\mathrm{S}=100 & \mathrm{~K}=90 & \mathrm{~T}=1.5 \\
\mathrm{r}=0.03 & \mathrm{q}=0.015 & \sigma=0.09
\end{array}
$$

Question 1 Answer

You should get an answer of 12.35008695 .

Question 2

Refer to the documentation for nag_roots_contfn_cntin (c05aw). We are now going to write a program to compute the Black Scholes implied volatility for a given call option price and set of parameters. In other words, given a call option price C and values of $\mathrm{S}, \mathrm{K}, \mathrm{T}, \mathrm{r}, \mathrm{q}$, find the value of σ so that the Black Scholes formula gives the target price C. Modify the function bs from Question 1 to have the signature

```
function [result, user] = bs(sigma, user)
```

In your main function, create an array named user to hold 6 values. Define variables S, K, T, r, q and the target call option price Ctarget. Assign S, K, T, r, q and Ctarget to the 6 elements of the array user.

In your function bs, assign the first 5 members of the user array to variables S , $\mathrm{K}, \mathrm{T}, \mathrm{r}$ and q , and call nag_specfun_opt_bsm_price to compute the price of a
call option. Return the difference between this price and the 6th member of your user array, Ctarget.

In your main program, call nag_roots_contfn_cntin and pass it bs as the function of which the zero is to be computed. Set eps $=$ eta $=1.0 \mathrm{e}-6$ and set $n f m a x=1500$.

1. Use your program to compute the implied volatility for a (target) call option price of 12.35008695 and

$$
\mathrm{S}=100 \quad \mathrm{~K}=90 \quad \mathrm{~T}=1.5 \quad \mathrm{r}=0.03 \quad \mathrm{q}=0.015
$$

Use an initial guess of $\sigma=0.15$.
2. Use your program to compute the implied volatility for a (target) call option price of 25.5 and

$$
\mathrm{S}=100 \quad \mathrm{~K}=90 \quad \mathrm{~T}=1.5 \quad \mathrm{r}=0.03 \quad \mathrm{q}=0.015
$$

Use an initial guess of $\sigma=0.15$.

Question 2 Answers

1. For target price 12.35008695 you should get an answer of 0.090001 .
2. For target price 25.5 you should get an answer of 0.429938 .
