
Experts in numerical algorithms
and HPC services

Scientific Computing with the NAG Toolbox for MATLAB

John Muddle

UK Academic Account Manager

NAG Ltd, Oxford

December 1st 2015

Scientific Computing with the NAG Toolbox for MATLAB 2

NAG at Sheffield University

 Unlimited use under Linux, Windows and Mac (32-bit and 64-bit)
 As long as for academic or research purposes

 Installation may be on any university, staff or student machine

 Products
 All NAG Libraries: Fortran, C, SMP, Python, Java, .NET, Toolbox for MATLAB

 How do you get the software?
 Help yourself from: http://www.nag.co.uk/downloads/index.asp

 Request licence keys via support@nag.co.uk using your university e-mail address
please e.g. xxxx@sheffield.ac.uk

 Full access to NAG Support
 Send support requests to support@nag.co.uk

http://www.nag.co.uk/downloads/index.asp
mailto:support@nag.co.uk
mailto:xxxx@sheffield.ac.uk
mailto:support@nag.co.uk

Scientific Computing with the NAG Toolbox for MATLAB 3

Objectives of today

Aim to:

 Extend your practical MATLAB programming
abilities

 Gain an overview of the contents of the NAG
mathematical library

 Understand how to find information about relevant
NAG routines

 Use NAG routines in helping to solve simple but
realistic problems

Scientific Computing with the NAG Toolbox for MATLAB 4

Slides

These slides are available as PowerPoint or PDF:

http://monet.nag.co.uk/nag_toolbox_training/sheffield/MATLAB

http://monet.nag.co.uk/nag_toolbox_training/sheffield/MATLAB

Scientific Computing with the NAG Toolbox for MATLAB 5

Introduction to NAG

 Numerical Algorithms Group - Founded 1970
 Co-operative software project: Birmingham, Leeds, Manchester,

Nottingham, Oxford, and Atlas Laboratory

 Incorporated as NAG Ltd. in 1976
 Not-for-profit

 Based in Oxford, with offices in Manchester, Chicago, Tokyo

Scientific Computing with the NAG Toolbox for MATLAB 6

What do NAG do?

 Mathematical algorithm development
 Collaboration

 Software engineering – production of software libraries

 HPC services

 Consultancy

 Implementation / porting

Scientific Computing with the NAG Toolbox for MATLAB 7

 “The study of methods for obtaining approximate
solutions to mathematical problems” – T. Hopkins
and C. Phillips, 1988
 But beware of assuming that “approximation” is a pejorative term

A definition of Numerical Analysis

Scientific Computing with the NAG Toolbox for MATLAB 8

 Accuracy of algorithms

 Problems due to floating-point arithmetic

 Error analysis - how are errors propagated?

 Stability

 Sensitivity of a computed solution to changes in input data

 Efficiency

 Which methods avoid unnecessary computation?

 Speed

 Desirable – but beware – “how fast do you want the wrong
answer?”

What are numerical analysts concerned with?

Scientific Computing with the NAG Toolbox for MATLAB 9

 Famous formula for roots of quadratic equation
𝑎𝑥2 + 𝑏𝑥 + 𝑐 = 0:

𝑥 =
−𝑏 ± 𝑏2 − 4𝑎𝑐

2𝑎

 Formulae for roots of cubic 𝑎𝑥3 +⋯ a bit more
complicated

 Formulae for roots of quartic much too big to put on
one slide

 No formulae for roots of higher order polynomials –
numerical methods must be used

Why use numerical methods?
A simple example: roots of polynomials

Scientific Computing with the NAG Toolbox for MATLAB 10

How do we decide what goes into libraries?

 Typically we get functionality requests from customers

 via technical support calls

 via salespeople

 We maintain a database of requests

 Probability of responding is weighted by number of

requests, importance of customers, and difficulty of

job

Scientific Computing with the NAG Toolbox for MATLAB 11

What’s so hard about that then?

 We must also worry about overflow and underflow

a = 5.55 b = 6.56 c = 12.1

a+b-c = 0.00 (due to rounding) instead of 0.01 in

exact arithmetic

 Computer arithmetic makes things tricky.

 Many people assume that computers are completely
accurate when it comes to operations on real numbers.

 Usually they are not!

 Numbers have finite precision

 Also a finite size

 They are subject to rounding error.

e.g. on a (hypothetical) decimal machine with 3 digits:

Scientific Computing with the NAG Toolbox for MATLAB 12

Example: PDF of Gamma Distribution

Probability density function (PDF)

0,,0
)(

1
),;(/1

 baxex

ab
baxf bxa

a

)(aab

might overflow or underflow, even if the end result is in a

reasonable range.

Program code to check all contingencies can become

monstrous!

1ax bxe /

looks easy to evaluate. But, depending on a, b and x, any

of the quantities

Scientific Computing with the NAG Toolbox for MATLAB 13

We also have to worry about performance

 Tune up code

 Use benchmarking programs

 Use high-performance math libraries like ACML or MKL where possible

 Investigate possibilities for parallelism

 OpenMP (for NAG SMP Library)

 MPI (for NAG Cluster Parallel Library)

 But correctness is most important

 How fast do you want the wrong answer?

Scientific Computing with the NAG Toolbox for MATLAB 14

Why is software testing important?

Six reasons not to test:

 “It takes too long – I’ve no time to do it”
 Fine – but be aware it may take longer later

 “It costs too much”
 It generally costs more to fix things later

 “This code will only be used for a short time”
 That’s what they said about Windows notepad

 “My code always works first time”
 You’ve got to be kidding

 “It’s someone else’s responsibility”
 Bad attitude!

 “I’m starting a new job next month”
 Let’s hope you don’t last long in that one either

Scientific Computing with the NAG Toolbox for MATLAB 15

A Famous Software Bug

Ariane 5 rocket explodes
(June 1996)

The Ariane 5 rocket exploded on its
maiden flight because the navigation
package was inherited from the Ariane 4
without proper testing. The new rocket
flew faster, resulting in larger values of
some variables in the navigation
software. Shortly after launch, an
attempt to convert a 64-bit floating-point
number into a 16-bit integer generated an
overflow. The error was caught, but the
code that caught it elected to shut down
the subsystem. The rocket veered off
course and exploded. (Kernighan, 1999)

www.space.com/imageoftheday/image_of_day_070316.html

Credit: Arianespace. www.arianespace.com

A successful launch in 2007

http://www.space.com/imageoftheday/image_of_day_070316.html
http://www.arianespace.com/

Scientific Computing with the NAG Toolbox for MATLAB 16

The NAG Engine

NAG Engine
(algorithm

repository)

NAG Fortran

Library

NAG C

Library

NAG

Toolbox for

MATLAB

NAG SMP

Library

User-callable

library routines

are thin wrappers

etc.

Scientific Computing with the NAG Toolbox for MATLAB 17

NAG Toolbox for MATLAB – Mark 24

 Root Finding

 Summation of Series

 Quadrature

 Ordinary Differential Equations

 Partial Differential Equations

 Numerical Differentiation

 Wavelets

 Integral Equations

 Mesh Generation

 Interpolation

 Curve and Surface Fitting

 Optimization (local and global)

 Approximations of Special
Functions

 Dense and sparse Linear Algebra

 Option pricing

 Correlation and Regression
Analysis

 Nearest correlation matrix

 Multivariate Analysis of Variance

 Random Number Generators

 Univariate Estimation

 Nonparametric Statistics

 Smoothing in Statistics

 Contingency Table Analysis

 Survival Analysis

 Time Series Analysis

 Operations Research

Scientific Computing with the NAG Toolbox for MATLAB 18

Installation of the NAG Toolbox

Get a version of the NAG Toolbox appropriate to your copy of
MATLAB from:

http://www.nag.co.uk/downloads/mbdownloads.asp

You will need a licence key – try the first one below:

MBW6I24DD TRIAL 2016/01/04 "R6kunal0pgtbWdaflgu1iwmkIR"
MBW3223DC TRIAL 2016/01/04 "60gn+ddIimgk40lKGnZSg2+kEz"
MBL6A24DN TRIAL 2016/01/04 "ChghxpANiuHo3xiJ1dRDoEhluk"

MBMI624DD TRIAL 2016/01/04 "9XhGMe8Ba=+ptxgYnlt4eDYeON"

http://www.nag.co.uk/downloads/mbdownloads.asp

Scientific Computing with the NAG Toolbox for MATLAB 19

Check correct installation

To check that you have the NAG Toolbox installed, in MATLAB
command window type a00aa

To check you have the licence key installed, type a00ac

(return value 1 indicates key found).

Scientific Computing with the NAG Toolbox for MATLAB 20

NAG Toolbox for MATLAB

 The NAG Toolbox (like all NAG libraries) is divided
into chapters, each devoted to a branch of
mathematics or statistics. Each has a 1 or 3-character
name and a title
 e.g. S – Special Functions or F03 – Determinants

 All routines in the Toolbox have five-character
names, beginning with the characters of the chapter
name, e.g. d01aj.

 There are also long names that are more descriptive
– e.g. c02ag() = nag_zeros_poly_real()

Scientific Computing with the NAG Toolbox for MATLAB 21

NAG Toolbox for MATLAB

 Documentation has an informative introduction to
each chapter:

 Technical background to the area.

 Assistance in choosing the appropriate routine

 And a document for each routine with:

 Description of method and references

 Specification of arguments

 Explanation of error exit

 Remarks on accuracy

 An example to illustrate use of routine, some enhanced
with graphics

Scientific Computing with the NAG Toolbox for MATLAB 22

NAG Documentation

 Documentation is available through the MATLAB help
system.

 In newer versions of MATLAB the NAG documentation
may be a little harder to find. Click the F1 key, then
choose “Supplemental Software”, then open the “NAG
Toolbox” folder

 You can also find NAG Toolbox documentation online:
 www.nag.co.uk/numeric/MB/manual64_24_1/html

http://www.nag.co.uk/numeric/MB/manual64_24_1/html

Scientific Computing with the NAG Toolbox for MATLAB 23

NAG Toolbox for MATLAB

 Let’s take a look ...

Scientific Computing with the NAG Toolbox for MATLAB 24

A Simple Example

 Here is an example of how to use the NAG Library to
compute the solution of a real system of linear
equations, Ax = b, where A is an n by n matrix and x
and b are n vectors.

a = [1.80, 2.88, 2.05, -0.89;

5.25, -2.95, -0.95, -3.80;

1.58, -2.69, -2.90, -1.04;

-1.11, -0.66, -0.59, 0.80];

b = [9.52; 24.35; 0.77; -6.22];

Scientific Computing with the NAG Toolbox for MATLAB 25

A Simple Example

 And we call it like this:

 Here the NAG routine f07aa takes two arguments,
the matrix of coefficients, A, and the vector
representing the right-hand side, b.

[lu, ipiv, x, info] = f07aa(a, b);

x

x =

1.0000

-1.0000

3.0000

-5.0000

Scientific Computing with the NAG Toolbox for MATLAB 26

Try the c02ag example program

 Find the c02ag document

 Go to the example program section

 Click link to open the program in the MATLAB editor

 Run the program as it stands

 Save the program to another location

 e.g. somewhere in your local file store

 Then modify the program to find all the roots of the
equation 𝑥8 = 1

Scientific Computing with the NAG Toolbox for MATLAB 27

What do we expect

 𝑥8 = 1 can be re-written as:

 𝑥4 + 1 𝑥2 + 1 𝑥 + 1 𝑥 − 1 = 0

 Obviously 𝑥 = 1,−1 are roots

 𝑥2 = −1 ⇒ 𝑥 = 𝑖, −𝑖

 For 𝑥4 = −1 we can use Euler’s equation and
de Moivre’s equation to get:

 𝑥 =
1+𝑖

√2
,
1−𝑖

√2
,
−1+𝑖

√2
,
−1−𝑖

√2

Scientific Computing with the NAG Toolbox for MATLAB 28

Optional Arguments

 Optional arguments are provided after all
compulsory arguments.

 Optional arguments appear in pairs: a string
representing the name followed by the value.

 The pairs can be provided in any order.

 There are optional arguments where:
 A sensible default value exists which applies to many

problems.

 The argument only applies to some cases.

 The value of the argument can normally be determined
from that of other arguments at runtime.

Scientific Computing with the NAG Toolbox for MATLAB 29

Optional arguments

 For example, in the system of equations given in the
previous section, it is obvious that n, the size of the
matrix A, is 4.

 However we can tell MATLAB that n is 3, in which
case it will solve the system represented by the top-
left 3x3 section of A, and the first three elements of
b.

 And so we would call like this …

Scientific Computing with the NAG Toolbox for MATLAB 30

Optional arguments

 The last element of x can (should) be ignored. Since b
was a 4x1 matrix on input, it will be a 4x1 matrix on
output, even though the last element is not being
used.

[lu, ipiv, x, info] = f07aa(a, b, 'n', nag_int(3));

x

x =

4.1631

-2.1249

3.9737

-6.2200

Scientific Computing with the NAG Toolbox for MATLAB 31

Arguments

 A similar outcome can be achieved by:

 Here x is of appropriate size.

[lu, ipiv, x, info] = f07aa(a(1:3,1:3), b(1:3));

x

x =

4.1631

-2.1249

3.9737

Scientific Computing with the NAG Toolbox for MATLAB 32

Another Example – Overriding Defaults

 g01hb (nag_stat_prob_multi_normal) computes
probabilities associated with a multivariate Normal
distribution, to a relative accuracy which defaults to
0.0001:

xmu = [0;0;0;0]; a = [-2;-2;-2;-2]; b = [2;2;2;2];

sig = [1,0.9,0.9,0.9; % Variance-covariance matrix

0.9,1,0.9,0.9;

0.9,0.9,1,0.9;

0.9,0.9,0.9,1];

nag_stat_prob_multi_normal(xmu,sig,'a',a,'b',b)

ans = 0.9142

 We can vary tol:
nag_stat_prob_multi_normal(xmu,sig,'a',a,'b',b,'tol',0.1)

ans = 0.9182

Scientific Computing with the NAG Toolbox for MATLAB 33

Errors and Warnings

 NAG toolbox routines can produce a number of
errors (names are on the next slide)

 In most cases the error message will give more
precise details of how the error was triggered. For
example a NAG:arrayBoundError might display the
message:

??? The dimension of argument 2 (A)

should be at least 4

Scientific Computing with the NAG Toolbox for MATLAB 34

Errors and Warnings

 NAG:arrayBoundError - Array provided is too small.

 NAG:callBackError - An error occurred when executing an
M-File passed as a parameter to the routine.

 NAG:missingInputParameters

 NAG:optionalParameterError - Not in name/value pairs, or
the name provided is not an optional parameter.

 NAG:tooManyOutputParameters

 NAG:typeError - A parameter is of the wrong type.

 NAG:unsetCellArrayError - A cell array has been passed
without all elements being set.

 NAG:valueError - An incorrect value has been provided for
a parameter.

 NAG:licenceError - A valid licence couldn’t be found.

Scientific Computing with the NAG Toolbox for MATLAB 35

Errors and Warnings

 The NAG routines can produce two warnings:

 NAG:truncationWarning - A string was truncated when
copying cell array of strings to a Fortran data structure.

 NAG:warning - The NAG routine returned an error or
warning.

 The latter is important, and means that on exit the
value of the argument ifail (or, in chapters f07 and
f08, info) was non-zero on exit.

 For details about how to interpret this value the user
should consult the Error Indicators and Warnings
section of the document for the particular routine.

Scientific Computing with the NAG Toolbox for MATLAB 36

Errors and Warnings

 If you do not wish to see a warning then you can
disable it in the usual MATLAB way, for example:

warning('off', 'NAG:warning')

 In this case it is vital that you check the value of ifail
or info on exit from the routine.

Scientific Computing with the NAG Toolbox for MATLAB 37

Turning NAG warnings on and off

warning('on', 'NAG:warning'); % Turn warnings on

a = [1 2; 2 4]; % N.B. a is a singular matrix

b = [1; 1];

[lu, ipiv, x, info] = f07aa(a,b); % Try to solve equations

Warning: nag_lapack_dgesv (f07aa) returned a warning indicator (2)

warning('off', 'NAG:warning'); % Turn warnings off

[lu, ipiv, x, info] = f07aa(a,b); % Try to solve equations

if (info ~= 0) % Must check info

'a warning occurred'

else

'everything OK'

end

Scientific Computing with the NAG Toolbox for MATLAB 38

Types

 The interfaces to NAG routines in the Toolbox are
quite precise about the types of their arguments.

 Since MATLAB assumes by default that every number
is a double users need to convert their input data to
the appropriate type if it is an integer, a complex
number or a logical.

 Similarly, in M-Files called by a NAG routine, the user
must ensure that the results returned are of the
appropriate type. This is to ensure the correct
alignment between the MATLAB and Fortran types.

Scientific Computing with the NAG Toolbox for MATLAB 39

MATLAB Data Types - Complex

 The complex function constructs a complex result
from real and imaginary parts.

 The statement
c = complex(x,y)

returns the complex result x + yi, where x and y are
identically sized real arrays or scalars of the same
data type.

 y is optional, and without this argument a complex
variable is retuned with zero imaginary part.

 You can test a variable with the isreal function, which
returns false if the variable is complex.

Scientific Computing with the NAG Toolbox for MATLAB 40

MATLAB Data Types - Integers

 There are also 8 integer data types in MATLAB:

int8, int16, int32, int64,

uint8, uint16, uint32, uint64

 The number refers to the number of bits that are
used to store the value. uint* are unsigned integers.

 For example the int32 function: myint = int32(n)

 You can find the range of values supported by these
data types with intmin and intmax:

>> [intmin(‘int8’) intmax(‘int8’)]

ans =

-128 127

Scientific Computing with the NAG Toolbox for MATLAB 41

Integers

 Integers used by the NAG Toolbox are chosen to be
compatible with those used internally by MATLAB,
and will be int32 or int64

Scientific Computing with the NAG Toolbox for MATLAB 42

Integers

 For portability across versions of the Toolbox that use
both 32 and 64 bit integers we provide two functions:

 nag_int(x) - converts x to the integer type compatible with
the current version of the NAG toolbox

 nag_int_name - returns the name of the integer class
compatible with your version of the NAG toolbox

>> a = nag_int(3)

a = 3

>> nag_int_name()

ans = int64

>> b = zeros(10, nag_int_name());

>> whos

Name Size Bytes Class Attributes

a 1x1 8 int64

ans 1x5 10 char

b 10x10 800 int64

Scientific Computing with the NAG Toolbox for MATLAB 43

MATLAB Data Types - Logical

 Logical data types:
>> a = true; b = false; a | b

ans =

1

 In many areas of MATLAB we can use integers
interchangeably with logical variables - in an if test
for example.

 However to create a logical from other datatypes,
use the logical function mylog = logical(0)
This returns true for all but variables with value zero.

Scientific Computing with the NAG Toolbox for MATLAB 44

Creating variables of correct type

 nag_int(1) - to create an integer with value 1

 complex(1,1) - to create 1.0000 + 1.0000i

 logical(0) - to create a logical that is .FALSE.

 If an object of the incorrect type is provided then a
NAG:typeError will be thrown:

s01ea(0)

??? argument number 1 is not a complex scalar

of class double.

s01ea(complex(0))

ans = 1.0000 + 0.0000i

Scientific Computing with the NAG Toolbox for MATLAB 45

Providing m-files as arguments

 Many NAG routines allow the user to provide an m-file
to evaluate a function, which might represent an
integrand, or the objective function in an optimization
problem, etc.

 Here is an example showing how to compute a definite
integral; 'd01ah_f' is the name of an m-file which
evaluates the integrand:

d01ah(0, 1, 1e-5, 'd01ah_f', nag_int(0))

ans =

3.1416

Scientific Computing with the NAG Toolbox for MATLAB 46

Providing m-files as arguments

 In this case 'd01ah_f.m' contains:

function [result] = d01ah_f(x)

result = 4.0/(1.0+x^2);

 For every instance where a NAG routine expects an
M-File to be provided, an example is given.

 Function handles can also be used.

Scientific Computing with the NAG Toolbox for MATLAB 47

Function handles

 These are useful in three main circumstances:

 when the argument is an existing MATLAB command

 when the argument is a simple expression returning one value
which can be represented as an anonymous function

 when the argument is a function that is local to an m-file.

 So we could have, for example, definite integrals:
 nag_quad_1d_fin_well(0, pi, 1e-5, @sin, nag_int(0))

 [result, abserr] = ...

d01aj(@(x) 4.0/(1.0+x^2), 0, 1, 1e-5, 1e-5)

Scientific Computing with the NAG Toolbox for MATLAB 48

User Data Arguments

 Sometimes you may need to pass data to be used by a
‘callback’ routine via a ‘user’ parameter:

x = [0.5; 1; 1.5];

mydata = [0.14,0.18,0.22,2.10,4.39];

[xOut, fsumsq] = e04fy(nag_int(15), ...

'e04fy_lsfun1', x, 'user', mydata);

 The data in ‘mydata’ is then passed on to
e04fy_lsfun1.m

49

FUNCTIONALITY AND DEMOS:

Curve and surface fitting

Scientific Computing with the NAG Toolbox for MATLAB 50

Chapter e02 – Curve and Surface Fitting

Typically, data contain random errors (e.g. from experimental

measurement) – so interpolation is not appropriate

Smoothness of fitting function is likely to be desirable

Problem to solve: given a set of data points, find

the value of a function at points other than the data

Unlike with interpolation,

fitted function need not

pass through data points

Scientific Computing with the NAG Toolbox for MATLAB 51

e02 – Curve and Surface Fitting

Segments are joined with first and second derivative

continuity at the joins (knots).

Piecewise

polynomial splines

are useful.

Scientific Computing with the NAG Toolbox for MATLAB 52

Chapter e02

Data fitting usually involves minimizing the norm of the

residuals

 e.g. minimize largest residual

 or minimize sum of squares of residuals

Data points may be weighted according to their

importance – bigger weight = more confidence

Splines play an important role

 Choice of knots may be crucial

 Some routines are automatic – no need to choose knots

Spline representation:

f(x) = c1N1(x) + c2N2(x) + … + cpNp(x)

where Ni(x) is a normalized cubic B-spline

Scientific Computing with the NAG Toolbox for MATLAB 53

Fitting examples – e02be and e02dc

 e02be/e02dc compute spline approximations to sets
of data values, given on an interval (1D) or
rectangular grid in the x-y plane (2D).

 The knots (where the individual splines meet) of the
spline are located automatically.

 A single argument, s, is specified to control the
trade-off between closeness of fit and smoothness of
fit. “Small” s closer fit.

 In theory, a value of s = 0 will produce an
interpolating spline.

< run e02be and e02dc demos here>

54

FUNCTIONALITY AND DEMOS:

Optimization

Scientific Computing with the NAG Toolbox for MATLAB 55

What do we mean by “Optimization”?

 For our purposes we mean “given a scalar real-
valued mathematical function of n variables xi, find
values of the variables x that make the function as
small (or as large) as possible”

Scientific Computing with the NAG Toolbox for MATLAB 56

How do we do it?

 We systematically choose values of the variables xi

from within the set of values that are allowed.

 Sometimes all values are allowed (unconstrained
optimization)

 Sometimes some values are forbidden (constrained
optimization)

 e.g. -3 <= x1 <= 3 or x2 > 0

 Typically the user must supply a starting point x

Scientific Computing with the NAG Toolbox for MATLAB 57

Linearly constrained optimization

Scientific Computing with the NAG Toolbox for MATLAB 58

Optimization - Nonlinear Constraints

58

Scientific Computing with the NAG Toolbox for MATLAB 59

e04 Routine Classification

 Number of variables:
 Single variable f(x)

 Multiple variable f(x)

 Type of objective:

 Linear

 Quadratic or sum of squares

 Nonlinear

 Constraints:
 None

 Simple bounds

 Linear

 Nonlinear

Scientific Computing with the NAG Toolbox for MATLAB 60

Are derivatives necessary?

 Some algorithms require them

 Some don’t

 Some prefer them but can manage without

 They may use finite difference estimates

<run steepest_descent_demo and e04uc_demo here>

Scientific Computing with the NAG Toolbox for MATLAB 61

NAG Optimization

 Problems categorized according to properties of
objective function:
 linear
 nonlinear
 sum of squares of nonlinear functions
 quadratic

 It is important to choose a method appropriate to
your problem type, for efficiency and the best
chance of success.

Scientific Computing with the NAG Toolbox for MATLAB 62

Best Advice – Use the Decision Trees

Scientific Computing with the NAG Toolbox for MATLAB 63

Run the e04uc demo yourself

 Go to the NAG Toolbox demos page in MATLAB

 Find Minimization (e04uc_demo) and click the ‘Run’
link

 Try adding linear constraints

 Click twice on the contour plot to set a line

 Click once more to determine which side of the line is
feasible (the other side will turn yellow)

 Change the function from Rosenbrock to Peaks

 Try using various different starting points and
observe what happens

Scientific Computing with the NAG Toolbox for MATLAB 64

Problem with local optimization

Scientific Computing with the NAG Toolbox for MATLAB 65

Hence - Global Optimization

 Multilevel Coordinate Search
 MCS - a “box splitting” method

 Arnold Neumaier (Vienna)

 Particle Swarm Optimization
 No assumptions about differentiability etc.

 No guarantees about finding optimal solution

 Can be useful for “noisy” problems

 Multi-Start e05uc
 Choose a large set of start positions depending on problem

size and how many threads available

 Based on solid foundation of local optimizer e04uc

Maybe try the demo Global_Minimization (e05jb_demo)

Scientific Computing with the NAG Toolbox for MATLAB 66

Continue with exercises

 Try more questions from the exercise sheets

67

FUNCTIONALITY AND DEMOS:

Random numbers

Scientific Computing with the NAG Toolbox for MATLAB 68

Chapter g05 – Random Numbers

Random numbers – used to model real-life

processes.

Humans are bad at choosing them.

 e.g. faking a random sequence of coin tosses is very

difficult: HTHHTHTTHTHHTTTHTTHHTTHTHHTHTH …

 Most people would choose a sequence easily proved not

to be random

Therefore good algorithms are required.

Scientific Computing with the NAG Toolbox for MATLAB 69

Chapter g05 – Random Numbers

Random numbers from non-uniform distributions

 Generated from uniform numbers

 Transformation methods

 Rejection methods

 Table search methods

 Normal (Gaussian) distribution

 Student’s t distribution

 Beta and Exponential

 Chi-Squared and Binomial

 Geometric, Poisson, F, Gamma, …

Scientific Computing with the NAG Toolbox for MATLAB 70

Pseudo- versus Quasi-Random Numbers

Pseudo-random numbers:

• generated systematically

 e.g. multiplicative congruential ni = a ni-1 mod m

 properties close to true random numbers

 (assuming that a and m are chosen wisely)

 negligible correlation between consecutive numbers

Quasi-random numbers:
 not statistically independent

 give more even distribution in space (“looks more

random”)

 useful for Monte Carlo integration

Scientific Computing with the NAG Toolbox for MATLAB 71

Pseudo- versus Quasi-Random Numbers

 Core MATLAB only has pseudo random numbers

 NAG Toolbox has pseudo and quasi

 This shows the difference:

<run quasi_integral here>

Scientific Computing with the NAG Toolbox for MATLAB 72

Mesh generation / PDE solution app

 In the NAG demo list, find the ‘Mesh Generation’ app
(it is at the bottom of the list of demos)

 Run the app (you will probably need to read the
documentation too!)

73

EXAMPLES:

Nearest Correlation Matrix

Scientific Computing with the NAG Toolbox for MATLAB 74

Nearest Correlation Matrix

 Models of more than one asset (e.g. stocks) all have
correlation

 What is correlation?

 Mathematically, a correlation matrix 𝐶 ∈ ℝ𝑛×𝑛 is

 Square

 Symmetric with ones on diagonal

 Positive semi-definite: 𝑥𝑇𝐶𝑥 ≥ 0 for all 𝑥 ∈ ℝ𝑛

 Estimating correlations is difficult!

 Historical data is typically dirty, has missing values,
contains arbitrages, ...

Scientific Computing with the NAG Toolbox for MATLAB 75

Nearest Correlation Matrix

 Most estimation techniques will give a symmetric,
square matrix with ones on the diagonal

 They WON’T give a positive semi-definite matrix!

 If you use these estimates, in certain conditions you will
get negative variances

 NAG Library can find the “nearest” correlation matrix
to a given square matrix 𝐴

 g02aa solves problem min𝐶 𝐴 − 𝐶 𝐹
2 in Frobenius norm

 g02ab incorporates weights min𝐶 𝑊1/2 𝐴 − 𝐶 𝑊1/2
𝐹

2

 Weights useful when have more confidence in accuracy of
observations for certain variables than for others

Show NCM demo

Scientific Computing with the NAG Toolbox for MATLAB 76

Various other demos in the NAG Toolbox

Including:

 Root finding

 Quadrature

 Global optimization

 Time Series

Scientific Computing with the NAG Toolbox for MATLAB 77

Continue with exercises

 Try the ODE IVP question if you haven’t already

Scientific Computing with the NAG Toolbox for MATLAB 78

Other versions of NAG Libraries

 NAG C/C++ Library

 NAG Fortran Library

 NAG C# / .NET Library

 Also callable from
 Microsoft Excel

 Visual Basic

 Java

 Python

 … and others

Scientific Computing with the NAG Toolbox for MATLAB 79

Hands-on exercise material

Exercise questions can be found here:

http://monet.nag.co.uk/nag_toolbox_training/MATLAB/toolbox_questions

Start off with the first question sheet – short questions
 Try whichever you like

Work alone or in pairs if you prefer

http://monet.nag.co.uk/InFoMM/MATLAB/toolbox_questions

