NAG Fortran Compiler Release 7.0 Release Note
July 25, 2022

1 Introduction

Release 7.0 of the NAG Fortran Compiler is a major update.
Customers upgrading from a previous release of the NAG Fortran Compiler will need a new licence key for this release.

See KLICENCE. txt for more information about Kusari Licence Management.

2 Release Overview

This release contains several major new features:

e parallel execution of coarray programs on shared-memory machines;

e half precision floating-point conforming to the IEEE arithmetic standard, including full support for all exceptions
and rounding modes;

e submodules, a Fortran 2008 feature for breaking large modules into separately-compilable files;
e teams, a Fortran 2018 coarray feature for structuring parallel execution;
e events, a Fortran 2018 coarray feature for lightweight single-sided synchronisation;

e atomic operations, a Fortran 2018 coarray feature for updating atomic variables without synchronisation.

This release also contains numerous minor enhancements, including:

other (minor) features from the Fortran 2008 and Fortran 2018 standards;

miscellaneous improvements to error detection, and improvements to error messages;

e acceptance of additional non-standard Fortran extensions;

optional auto-skipping NAMELIST input.

3 Compatibility

3.1 Compatibility with Release 6.2
On MacOS the 32-bit ABI mode accessible via —abi=32 has been removed; consequently only 64-bit compilation is
supported and the —abi= switch has been removed entirely.

Other than this, Release 7.0 is fully compatible with Release 6.2 except when coarrays are used, or when the —C'=calls
option is used for a subroutine that has an alternate return. Any program that uses these features will need to be
recompiled.

3.2 Compatibility with Release 6.1

Programs which use features from HPF (High Performance Fortran), for example the ILEN intrinsic function or the
HPF_LIBRARY module, are no longer supported.

The previously deprecated —abi=64 option on Linux x86-64 has been withdrawn. This option provided an ABI with
64-bit pointers but 32-bit object sizes and subscript arithmetic, and was only present for compatibility with Release
5.1 and earlier.

With the exception of HPF support and the deprecated option removal, Release 7.0 of the NAG Fortran Compiler is
fully compatible with Release 6.1.

3.3 Compatibility with Release 6.0

With the exception of HPF support and the deprecated option removal, Release 7.0 of the NAG Fortran Compiler is
compatible with Release 6.0 except that programs that use allocatable arrays of “Parameterised Derived Type” will
need to be recompiled (this only affects module variables and dummy arguments).

3.4 Compatibility with Releases 5.3.1, 5.3 and 5.2

With the exception of HPF support and the deprecated option removal, Release 7.0 of the NAG Fortran Compiler is
fully compatible with Release 5.3.1. It is also fully compatible with Releases 5.3 and 5.2, except that on Windows,
modules or procedures whose names begin with a dollar sign ($) need to be recompiled.

For a program that uses the new “Parameterised Derived Types” feature, it is strongly recommended that all parts
of the program that may allocate, deallocate, initialise or copy a polymorphic variable whose dynamic type might be
a parameterised derived type, should be compiled with Release 7.0.

3.5 Compatibility with Release 5.1

Release 7.0 of the NAG Fortran Compiler is compatible with NAGWare f95 Release 5.1 except that:

e programs that use features from HPF are not supported;

e programs or libraries that use the CLASS keyword, or which contain types that will be extended, need to be
recompiled;

e 64-bit programs and libraries compiled with Release 5.1 on Linux x86-64 (product NPL6A51NA) are binary
incompatible, and need to be recompiled.

3.6 Compatibility with Earlier Releases

Except as noted, the NAG Fortran Compiler release 7.0 is compatible with NAGWare f90 Releases 2.1 and 2.2, as well
as with all NAGWare f95 Releases from 1.0 to 5.0, except as noted below.

The following incompatibilities were introduced in Release 5.1:
e The value returned by STAT=, on an ALLOCATE or DEALLOCATE statement, may differ from the pre-5.1 value in
some cases. For further information see the F90_STAT module documentation.
e Programs that used type extension (EXTENDS attribute) in 5.0 need to be recompiled.
e Formatted output for IEEE infinities and NaNs is different, and now conforms to Fortran 2003.
e List-directed output of a floating-point zero now uses F format, as required by Fortran 2003, instead of E format.

e An i/o or format error encounted during NAMELIST input will now skip the erroneous record. This behaviour is
the same as all other formatted input operations including list-directed.

4

5

Updated Fortran 2003 Support

e The IEEE_SUPPORT functions from IEEE_ARITHMETIC and IEEE_EXCEPTIONS are permitted in constant expres-

sions. For example,

LOGICAL,PARAMETER :: minexp = &
MERGE (MIN_EXPONENT (X) -DIGITS(X) ,MIN_EXPONENT(X) ,IEEE_SUPPORT_DENORMAL (X))

New Fortran 2008 Features

A specification expression may now use a user-defined operation, provided that operation is provided by a
specification function. (A specification function must be a pure function that is not a statement function or
internal function, and that does not have a dummy procedure argument.) For example, given the interface block

INTERFACE OPERATOR(.user.)
PURE INTEGER FUNCTION userfun(x)
REAL, INTENT(IN) :: x
END FUNCTION
END INTERFACE

the user-defined operator .user. may be used in a specification expression as follows:
LOGICAL mask(.user. (3.145))

Note that this applies to overloaded intrinsic operators as well as user-defined operators.

A specification expression may now use the C_LOC and C_FUNLOC functions from the IS0_C_BINDING module. For
example, given a TYPE(C_PTR) variable X and another interoperable variable Y with the TARGET attribute,

INTEGER workspace (MERGE(10,20,C_ASSOCIATED(X,C_LOC(Y))))

is allowed, and will give workspace a size of 10 elements if the C pointer X is associated with Y, and 20 elements
otherwise.

An internal procedure may now be a specific procedure in a generic interface. For example,

SUBROUTINE example
INTERFACE gen
PROCEDURE internal
END INTERFACE
CALL gen
CONTAINS
SUBROUTINE internal
PRINT *,’Hello example’
END SUBROUTINE
END SUBROUTINE

Note that the generic gen could refer to other procedures if gen is also a generic name in the host scoping unit,
or a generic name imported by use association. However, gen can only refer to the procedure internal when
invoked from within the subroutine example.

The FINDLOC intrinsic function is now available. It is similar to MAXLOC and MINLOC, but instead of finding the
location of the maximum or minimum value of an array, it finds a location that is equal to a specified value; thus
it is available for all intrinsic types including COMPLEX and LOGICAL. It has one of the following two forms:

FINDLOC (ARRAY, VALUE, DIM, MASK, KIND, BACK)
FINDLOC (ARRAY, VALUE, MASK, KIND, BACK)

where
ARRAY is an array of intrinsic type, with rank N;
VALUE is a scalar of the same type (if LOGICAL) or which may be compared with ARRAY using the intrinsic
operator == (or .EQ.);
DIM is a scalar INTEGER in the range 1 to N;
MASK (optional) is an array of type LOGICAL with the same shape as ARRAY
KIND (optional) is a scalar INTEGER constant expression that is a valid Integer kind number;
BACK (optional) is a scalar LOGICAL value.

The result of the function is type INTEGER, or INTEGER (KIND) if KIND is present.

In the form without DIM, the result is a vector of length N, and is the location of the element of ARRAY that is
equal to VALUE; if MASK is present, only elements for which the corresponding element of MASK are .TRUE. are
considered. As in MAXLOC and MINLOC, the location is reported with 1 for the first element in each dimension;
if no element equal to VALUE is found, the result is zero. If BACK is present with the value .TRUE., the element
found is the last one (in array element order); otherwise, it is the first one.

In the form with DIM, the result has rank N—1 (thus scalar if ARRAY is a vector), the shape being that of ARRAY
with dimension DIM removed, and each element of the result is the location of the (masked) element in the
dimension DIM vector that is equal to VALUE.

For example, if ARRAY is an Integer vector with value [10,20,30,40,50], FINDLOC(ARRAY,30) will return the
vector [3] and FINDLOC(ARRAY,7) will return the vector [0 1J.

Submodules, together with separate module procedures, provide an additional method of structuring a Fortran
program.

A “separate module procedure” is a procedure whose interface is declared in the module specification part, but
whose definition may provided either in the module itself, or in a submodule of that module. The interface of
a separate module procedure is declared by using the MODULE keyword in the prefix of the interface body. For
example,

INTERFACE
MODULE RECURSIVE SUBROUTINE sub(x,y)
REAL, INTENT (INOUT) :: x,y
END SUBROUTINE
END INTERFACE

An important aspect of the interface for a separate module procedure is that, unlike any other interface body,
it accesses the module by host association without the need for an IMPORT statement. For example,

INTEGER,PARAMETER :: wp = SELECTED_REAL_KIND(15)
INTERFACE
MODULE REAL(wp) FUNCTION f(a,b)
REAL (wp) a,b
END FUNCTION
END INTERFACE

The eventual definition of the separate module procedure, whether in the module itself or in a submodule, must
have exactly the same characteristics, the same names for the dummy arguments, the same name for the result
variable (if a function), the same binding-name (if it uses BIND(C)), and be RECURSIVE if and only if the interface
is declared so. There are two ways to achieve this:

1. Define the procedure in the normal way, and get all the characteristics right; the compiler will check that
you have done so. Note that the definition must also include the MODULE keyword in the prefix, just like
the definition. For example,

CONTAINS
MODULE REAL (wp) FUNCTION f(a,b)
REAL(wp)a,b
f = a*x*2 - b*x*x3
END FUNCTION

2. Alternatively, the entire interface may be accessed in the definition without redeclaring everything by using
the MODULE PROCEDURE statement in this context. For example,

CONTAINS
MODULE PROCEDURE sub
! Arguments A and B, their characteristics, and that this is a recursive subroutine,
! are all taken from the interface declaration.
IF (a>b) THEN
CALL sub(b,-ABS(a))
ELSE
a = b*x2 - a
END IF
END PROCEDURE

A submodule has the form (italic square brackets indicate optionality):

submodule-stmt
declaration-part
[CONTAINS
module-subprogram-part J
END [SUBMODULE [submodule-name]]

The initial submodule-stmt has the form
SUBMODULE (module-name [: parent-submodule-name]) submodule-name

where module-name is the name of a module with one or more separate module procedures, parent-submodule-
name (if present) is the name of another submodule of that module, and submodule-name is the name of the
submodule being defined. The submodules of a module thus form a tree structure, with successive submodules
being able to extend others; however, the name of a submodule is unique within that module. This structure is
to facilitate creation of internal infrastructure (types, constants, and procedures) that can be used by multiple
submodules, without having to put all the infrastructure inside the module itself.

The submodule being defined accesses its parent module or submodule by host association; for entities from the
module, this includes access to PRIVATE entities. Any local entity it declares in the declaration-part will therefore
block access to an entity in the host that has the same name.

The entities (variables, types, procedures) declared by the submodule are local to that submodule, with the sole
exception of separate module procedures that are declared in the ancestor module and defined in the submodule.
No procedure is allowed to have a binding name, again, except in the case of a separate module procedure, where
the binding name must be the same as in the interface.

For example,

MODULE mymod
INTERFACE
MODULE INTEGER FUNCTION next_number() RESULT(r)
END FUNCTION
MODULE SUBROUTINE reset ()
END SUBROUTINE
END INTERFACE
END MODULE
SUBMODULE (mymod) variables
INTEGER :: mnext = 1
END SUBMODULE
SUBMODULE (mymod:variables) functions
CONTAINS
MODULE PROCEDURE next_number
r = next
next = next + 1
END PROCEDURE

END SUBMODULE
SUBMODULE (mymod:variables) subroutines
CONTAINS
MODULE SUBROUTINE reset()
PRINT *,’Resetting’
next = 1
END SUBROUTINE
END SUBMODULE
PROGRAM demo
USE mymod
PRINT *,’Hello’,next_number()
PRINT *,’Hello again’,next_number ()
CALL reset
PRINT *,’Hello last’,next_number()
END PROGRAM

Submodule information for use by other submodules is stored by the NAG Fortran Compiler in files named
module . submodule . sub, in a format similar to that of .mod files. The —nomod option, which suppresses creation
of .mod files, also suppresses creation of .sub files.

6 New Fortran 2018 Features

e If a dummy argument of a function that is part of an OPERATOR generic has the VALUE attribute, it is no longer
required to have the INTENT (IN) attribute.

For example,

INTERFACE OPERATOR(+)
MODULE PROCEDURE logplus
END INTERFACE

PURE LOGICAL FUNCTION logplus(a,b)
LOGICAL,VALUE :: a,b
logplus = a.0R.b

END FUNCTION

e If the second argument of a subroutine that is part of an ASSIGNMENT generic has the VALUE attribute, it is no
longer required to have the INTENT(IN) attribute.

For example,

INTERFACE ASSIGNMENT (=)
MODULE PROCEDURE asgnli
END INTERFACE

PURE SUBROUTINE asgnli(a,b)
LOGICAL,INTENT(OUT) :: a
INTEGER,VALUE :: b
DO WHILE (IAND(b,NOT(1))/=0)

b = IEOR(IAND(b,1),SHIFTR(b,1))
END DO
a = b/=0 ! 0dd number of "1" bits.
END SUBROUTINE

o With the —recursive or the —f2018 option, procedures are recursive by default. For example, this subprogram
INTEGER FUNCTION factorial(m) RESULT(r)

IF (n>1) THEN
r = nxfactorial(n-1)

ELSE
r =1
END IF
END FUNCTION

is valid, just as if it had been explicitly declared with the RECURSIVE keyword.

This does not apply to assumed-length character functions (where the result is declared with CHARACTER (LEN=x*);
these remain prohibited from being declared RECURSIVE.

Note that procedures that are RECURSIVE by default are excluded from the effects of the —save option, exactly
as if they were explicitly declared RECURSIVE.

e Elemental procedures may now be recursive, whether explicitly declared RECURSIVE or by default (when the
—f2018 or —recursive options are specified). For example,

ELEMENTAL RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)
INTEGER, INTENT(IN) :: n
IF (n>1) THEN
r = n*factorial(n-1)
ELSE
r =1
END IF
END FUNCTION

may be invoked with
PRINT *,factorial([1,2,3,4,5 1)

to print the first five factorials.

e The NON_RECURSIVE keyword explicitly declares that a procedure will not be called recursively. For example,

NON_RECURSIVE INTEGER FUNCTION factorial(n) RESULT(r)
r=1
DO i=2,n
r = r*i
END DO
END FUNCTION

In Fortran 2008 and older standards, procedures are non-recursive by default, so this keyword has no effect
unless the —recursive or —f2018 is being used.

e The C_FUNLOC function from the intrinsic module ISO_C_BINDING accepts a non-interoperable procedure argu-
ment. The C_FUNPTR value produced should not be converted to a C function pointer, but may be converted
to a suitable (also non-interoperable) Fortran procedure pointer with the C_F_PROCPOINTER subroutine from
IS0_C_BINDING. For example,

USE ISO_C_BINDING

ABSTRACT INTERFACE
SUBROUTINE my_callback_interface(arg)

CLASS(*) arg

END SUBROUTINE

END INTERFACE

TYPE,BIND(C) :: mycallback
TYPE(C_FUNPTR) :: callback

END TYPE

TYPE(mycallback) cb
PROCEDURE (my_callback_interface) ,EXTERNAL :: sub
cbjcallback = C_FUNLOC(sub)

PROCEDURE (my_callback_interface) ,POINTER :: pp
CALL C_F_PROCPOINTER (cb%callback,pp)
CALL pp(...)

This functionality may be useful in a mixed-language program when the C_FUNPTR value is being stored in a
data structure that is manipulated by C code.

The C_LOC function from the intrinsic module ISO_C_BINDING accepts an array of non-interoperable type, and
the C_F_POINTER function accepts an array pointer of non-interoperable type. The array must still be non-
polymorphic and contiguous.

This improves interoperability with mixed-language C and Fortran programming, by letting the program pass
an opaque “handle” for a non-interoperable array through a C routine or C data structure, and reconstruct the
Fortran array pointer later. This kind of usage was previously only possible for scalars.

The EQUIVALENCE and COMMON statements, and the BLOCK DATA program unit, are considered to be obsolescent
in Fortran 2018, and will be reported as such if the —f2018 option is used (this is not the default).

The RECL= specifier in an INQUIRE statement for an unconnected unit or file now assigns the value —1 to the
variable. For a unit or file connected with ACCESS=’>STREAM’, it assigns the value —2 to the variable. Under
previous Fortran standards, the variable became undefined.

Additional intrinsic atomic subroutines provide a means for multiple images to update atomic variables without
synchronisation. These are:

ATOMIC_ADD (ATOM,VALUE, STAT)
ATOMIC_AND (ATOM,VALUE, STAT)
ATOMIC_CAS (ATOM,OLD,COMPARE,NEW, STAT)
ATOMIC_FETCH_ADD (ATOM,VALUE,OLD,STAT)
ATOMIC_FETCH_AND (ATOM,VALUE,OLD,STAT)
ATOMIC_FETCH.OR (ATOM,VALUE,OLD,STAT)
ATOMIC_FETCH_XOR (ATOM,VALUE,OLD,STAT)
ATOMIC_OR (ATOM,VALUE,STAT)
ATOMIC_XOR (ATOM,VALUE,STAT)

The arguments ATOM, COMPARE, NEW and OLD are all INTEGER (ATOMIC_INT KIND). The ATOM argument is the one
that is updated, and must be a coarray or a coindexed variable. The OLD argument is INTENT (OUT), and receives
the value of ATOM before the operation. The STAT argument is optional, and must be a non-coindexed variable
of type INTEGER and at least 16 bits in size.

The VALUE argument must be INTEGER but can be of any kind; however, both VALUE and the result of the
operation must be representable in INTEGER (ATOMIC_INT _KIND).

The *_ADD operation is addition, the *_AND operation is bitwise and (like IAND), the *_OR operation is bitwise or
(like IOR) and the * XOR operation is bitwise exclusive or (like IEOR).

ATOMIC_CAS is an atomic compare-and-swap operation. If ATOM is equal to COMPARE, it is assigned the value NEW;

otherwise, it remains unchanged. In either case, the value before the operation is assigned to OLD. Note that
both COMPARE and NEW must also be INTEGER (ATOMIC_INT_KIND).

If the ATOM is a coindexed variable, and is located on a failed image, the operation fails and an error condition is
raised; the OLD argument becomes undefined, and if STAT is present, it is assigned the value STAT_FAILED_IMAGE;
if STAT is not present, the program is terminated. If no error occurs and STAT is present, it is assigned the value
zero.

The intrinsic function COSHAPE returns a vector of the co-extents of a coarray. It has the form
COSHAPE(COARRAY , KIND)

where

COARRAY is a coarray of any type; if it is ALLOCATABLE, it must be allocated;
if it is a structure component, the rightmost component must be a coarray component;
KIND (optional) is a scalar INTEGER constant expression that is a valid Integer kind number.

The result of the function is type INTEGER, or INTEGER (KIND) if KIND is present.

The size of the result is equal to the co-rank of COARRAY. For example, if a coarray is declared

REAL x[5,%*]

and there are eight images in the current team, COSHAPE (x) will be equal to [5,2 1].

The intrinsic elemental function IMAGE_STATUS enquires whether another image has stopped or failed. It has the
form

IMAGE_STATUS(IMAGE , TEAM)

where

IMAGE is a positive integer that is a valid image number;
TEAM (optional) is a scalar TEAM_TYPE value that identifies the current or an ancestor team.

The result of the function is default INTEGER, with the value STAT_FAILED_IMAGE if the image has failed,
STAT_STOPPED_IMAGE if the image has stopped, and zero otherwise. The optional TEAM argument specifies which
team the image number applies to; if it is not specified, the current team is used.

The intrinsic function STOPPED_IMAGES returns an array listing the images that have initiated normal termination
(i.e. “stopped”). This function has the form

STOPPED_IMAGES(TEAM , KIND)

where

TEAM (optional) is a scalar TEAM_TYPE value that identifies the current or an ancestor team;
KIND (optional) is a scalar INTEGER constant expression that is a valid Integer kind number.

The result of the function is a vector of type INTEGER, or INTEGER(KIND) if KIND is present. The elements of
the array are in ascending order.

The type EVENT_TYPE in the intrinsic module ISO_FORTRAN_ENV, along with new statements and the intrinsic
function EVENT_QUERY, provides support for events, a lightweight one-sided synchronisation mechanism.

Like type LOCK_TYPE, entities of type EVENT_TYPE are required to be variables or components, variables of type
EVENT_TYPE are required to be coarrays, and variables with noncoarray subcomponents of type LOCK_TYPE are
required to be coarrays. Such variables are called event variables. An event variable is not permitted to appear
in a variable definition context (i.e. any context where it might be modified), except in an EVENT POST or EVENT
WAIT statement, or as an actual argument where the dummy argument is INTENT (INOUT).

An event variable on an image may have an event “posted” to it by means of the image control statement EVENT
POST, which has the form

EVENT POST (event-variable [, sync-stat J...)

where the optional sync-stats may be a single STAT=stat-variable specifier and/or a single ERRSMG=errmsg-variable
specifier; stat-variable must be a scalar integer variable that can hold values up to 9999, and errmsg-variable
must be a scalar default character variable. Posting an event increments the variable’s “outstanding event count”
(this count is initially zero). The event-variable in this statement will usually be a coindexed variable, as it is
rarely useful for an image to post an event to itself.

If STAT= appears and the post is successful, zero is assigned to the stat-variable. If the image on which the
event-variable is located has stopped, STAT_STOPPED_IMAGE is assigned to the stat-variable; if the image has
failed, STAT_FAILED_IMAGE is assigned, and if any other error occurs, some other positive value is assigned. If
ERRMSG= appears and any error occurs, an explanatory message is assigned to the errmsg-variable. Note that if
STAT= does not appear and an error occurs, the program will be error-terminated, so having ERRMSG= without
STAT= is useless.

Events are received by the image control statement EVENT WAIT, which has the form
EVENT WAIT (event-vartable , event-watit-spec-list)

where the optional event-wait-spec-list is a comma-separated list that may contain a single STAT=stat-variable
specifier, a single ERRSMG=errmsg-variable specifier, and/or a single UNTIL_COUNT=scalar-integer-expr specifier.
Waiting on an event waits until its “outstanding event count” is greater than or equal to the UNTIL_COUNT=
specifier value, or greater than zero if UNTIL_COUNT= does not appear. If the value specified in UNTIL_COUNT= is
less than one, it is treated as if it were equal to one.

The event-variable in this statement is not permitted to be coindexed; that is, an image can only wait for
events posted to its own event variables. There is a partial synchronisation between the waiting image and
the images that contributed to the “outstanding event count”; the segment following execution of the EVENT
WAIT statement follows the segments before the EVENT POST statement executions. The synchronisation does
not operate in reverse, that is, there is no implication that execution of any segment in a posting image follows
any segment in the waiting image.

The STAT= and ERRMSG= operate similarly to the EVENT POST statement, except of course that STAT FAILED_IMAGE
and STAT_STOPPED_IMAGE are impossible.

Finally, the intrinsic function EVENT_QUERY can be used to interrogate an event variable without waiting for it.
It has the form

EVENT_QUERY (EVENT, COUNT, STAT)

where EVENT is an event variable, COUNT is an integer variable at least as big as default integer, and the optional
STAT is an integer variable that can hold values up to 9999. EVENT is not permitted to be a coindexed variable;
that is, only the image where the event variable is located is permitted to query its count. COUNT is assigned
the current “outstanding event count” of the event variable. If STAT is present, it is assigned the value zero on
successful execution, and a positive value if any error occurs. If any error occurs and STAT is not present, the
program is error-terminated.

Note that event posts in unordered segments might not be included in the value assigned to count; that is, it
might take some (communication) time for an event post to reach the variable, and it is only guaranteed to have
reached the variable if the images have already synchronised. Use of EVENT_QUERY does not by itself imply any
synchronisation.

The type TEAM_TYPE in the intrinsic module ISO_FORTRAN_ENV, along with new statements and intrinsic proce-
dures, provides support for teams, a new method of structuring coarray parallel computation. The basic idea
is that while executing inside a team, the coarray environment acts as if only the images in the team exist. This
facilitates splitting coarray computations into independent parts, without the hassle of passing around arrays
listing the images that are involved in a particular part of the computation.

Unlike EVENT_TYPE and LOCK_TYPE, functions that return TEAM_TYPE are permitted. Furthermore, a variable of
type TEAM_TYPE is forbidden from being a coarray, and assigning a TEAM_TYPE value from another image (e.g. as
a component of a derived type assignment) makes the variable undefined; this is because the TEAM_TYPE value
might contain information specific to a particular image, e.g. routing information to the other images. Variables
of type TEAM_TYPE are called team variables.

Creating teams
The set of all the images in the program is called the initial team. At any time, a particular image
will be executing in a particular team, the current team. A set of subteams of the current team
can be created at any time by using the FORM TEAM statement, which has the form

FORM TEAM (team-number , team-variable [, form-team-spec J...)

where team-number is a scalar integer expression that evaluates to a positive value, team-variable is a
team variable, and each form-team-spec is STAT=, ERRMSG=, and NEW_INDEX=indez-value specifier. At
most one of each kind of form-team-spec may appear in a FORM TEAM statement. All active images of
the current team must execute the same FORM TEAM statement. If NEW_INDEX= appears, indez-value
must be a positive scalar integer (see below). The STAT= and ERRMSG= specifiers have their usual form
and semantics.

The number of subteams that execution of FORM TEAM produces is equal to the number of unique
team-number values in that execution; each unique team-number value identifies a subteam in the
set, and each image belongs to the subteam whose team number it specified. If NEW_INDEX= appears,
it specifies the image number that the image will have in its new subteam, and therefore must be
in the range 1 to N, where N is the number of images in that subteam, and must be unique. If
NEW_INDEX= does not appear, it is processor-dependent what the image number in the new subteam
will be.

For example,

TYPE(TEAM_TYPE) oddeven
myteamnumber = 111*(MOD(THIS_IMAGE(),2) + 1)
FORM TEAM (myteamnumber, oddeven)

10

will create a set of two subteams, one with team number 111, the other with team number 222. Team
111 will contain the images with even image numbers in the current team, and team 222 will contain
the images with odd image numbers in the current team. On each image, the variable oddeven
identifies the subteam to which that image belongs.

Note that the team numbers are completely arbitrary (being chosen by the program), and only have
meaning within that set of subteams, which are called “sibling” teams.

Changing to a subteam
The current team is changed by executing a CHANGE TEAM construct, which has the basic form:

CHANGE TEAM (team-value [, sync-stat-list])
statements
END TEAM [([sync-stat-list])]

where team-value is a value of type TEAM_TYPE, and the optional sync-stat-list is a comma-separated
list containing at most one STAT= and ERRMSG= specifier; the STAT= and ERRMSG= specifiers have their
usual form and semantics. Execution of the statemnents within the construct are with the current
team set to the team identified by team-value; this must be a subteam of the current team outside the
construct. The setting of the current team remains in effect during procedure calls, so any procedure
referenced by the construct will also be executed with the new team current.

Transfer of control out of the construct, e.g. by a RETURN or GOTO statement is prohibited. The
construct may be exited by executing its END TEAM statement, or by executing an EXIT statement
that belongs to the construct; the latter is only possible if the construct is given a name (this is not
shown in the form above, but consists of “construct-name:” prefix to the CHANGE TEAM statement,
and and a “construct-name” suffix to the END TEAM statement).
While executing a CHANGE TEAM construct, image selectors operate using the new team’s image indices,
the intrinsic functions NUM_IMAGES and THIS_IMAGES return the data for the new team, and SYNC ALL
synchronises the new team only.
There is an implicit synchronisation of all images of the new team both on the CHANGE TEAM statement,
and on the END TEAM statement, and all active images must execute the same statement at this time.
Synchronising parent or ancestor teams
While executing within a CHANGE TEAM construct, the effects of SYNC ALL and SYNC IMAGES only
apply to images within the current team. For SYNC ALL to synchronise the parent team, it would be
necessary to first exit the construct. This may be inconvenient when the computation following the
synchronisation would be within the team.

For this purpose, the SYNC TEAM statement has been added, with the form
SYNC TEAM (team-value [, sync-stat-list])

where team-value identifies the current team or an ancestor thereof, and sync-stat-list is the usual

comma-separated list containing at most one STAT= specifier and at most one ERRMSG= specifier (these

have their usual semantics and so are not further described here).

The effect is to synchronise all images in the specified team.

Team-related intrinsic functions
— The intrinsic function GET_TEAM returns a value of type TEAM_TYPE that identifies a particular
team. (This is the only way to get a TEAM_TYPE value for the initial team.) The function has the
form
GET_TEAM(LEVEL)
where the optional LEVEL argument is a scalar integer value that is equal to one of the named con-
stants CURRENT_TEAM, INITIAL _TEAM or PARENT_TEAM, in the intrinsic module ISO_FORTRAN_ENV.
This argument specifies which team the returned TEAM_TYPE value should identify; if it is absent,
the value for the current team is returned. If the current team is the initial team, the LEVEL
argument must not be equal to PARENT_TEAM, as the initial team has no parent.
— The intrinsic function TEAM_NUMBER returns a team number value (that was used in FORM TEAM
by the executing image). It has the form
TEAM_NUMBER(TEAM)

where the optional TEAM argument specifies which team to return the information for; it must
identify the current team or an ancestor team, not a subteam or unrelated team. If TEAM is
absent, the team number for the current team is returned. The initial team is considered to have
a team number of —1 (except for the initial team, all team numbers are positive values).

11

Information about sibling and ancestor teams

The intrinsic functions NUM_IMAGES and THIS_IMAGE normally return information relevant to the
current team, but they can return information for an ancestor team by using the optional TEAM
argument, which takes a TEAM_TYPE value that identifies the current team or an ancestor. Similarly,
the NUM_IMAGES intrinsic can return information for a sibling team by using the optional TEAM_NUMBER
argument, which takes an integer value that is equal to the team number of the current or a sibling
team. (Note that because the executing image is never a member of a sibling team, THIS_IMAGE does
not accept a TEAM_NUMBER argument.) The intrinsic function NUM_IMAGES thus has two additional
forms as follows:

NUM_IMAGES(TEAM)
NUM_IMAGES(TEAM_NUMBER)

For THIS_IMAGE, the revised forms it may take are as follows:

THIS_IMAGE(TEAM)
THIS_IMAGE(COARRAY , TEAM)
THIS_IMAGE(COARRAY, DIM , TEAM)

The meanings of the COARRAY and DIM arguments is unchanged. The optional TEAM argument specifies
the team for which to return the information.

Establishing coarrays
A coarray is not allowed to be used within a team unless it is established in that team or an ancestor
thereof. The basic rules for establishment are as follows:

1. a nonallocatable coarray with the SAVE attribute (explicit or implicit) is always established;
2. an unallocated coarray (with the ALLOCATABLE attribute) is not established;
3. an allocated coarray is established in the team where it was allocated;

4. a dummy coarray is established in the team that executed the procedure call (this may be different
from the team where the actual argument is established).

Allocating and deallocating coarrays in teams
If a coarray with the ALLOCATABLE attribute is already allocated when a CHANGE TEAM statement is
executed, it is not allowed to DEALLOCATE it within that construct (or within a procedure called from
that construct).

If a coarray with the ALLOCATABLE attribute is unallocated when a CHANGE TEAM statement is executed,
it may be allocated (using ALLOCATE) within that construct (or within a procedure called from that
construct), and may be subsequently deallocated as well. If such a coarray remains allocated when
the END TEAM statement is executed, it is automatically deallocated at that time.

This means that when using teams, allocatable coarrays may be allocated on some images (within
the team), but unallocated on other images (outside the team), or allocated with a different shape or
type parameters on other images (also outside the team). However, when executing in a team, the
coarray is either unallocated on all images of the team, or allocated with the same type parameters
and shape on all images of the team.
Accessing coarrays in sibling teams

Access to a coarray outside the current team, but in a sibling team, is possible using the TEAM_NUMBER=
specifier in an image selector. This uses the extended syntax for image selectors:

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM_NUMBER=tean
number specifier, where team-number is the positive integer value that identifies a sibling team. The
image-selector-spec-list may also contain a STAT= specifier (this is described later, under Fault toler-
ance).
When the TEAM_NUMBER= specifier is used the cosubscripts are treated as cosubscripts in the sibling
team. Note that access in this way is quite risky, and will typically require synchronisation, possibly
of the whole parent team. The coarray in question must be established in the parent team.
Accessing coarrays in ancestor teams
Access to a coarray in the parent or more distant ancestor team is possible using the TEAM= specifier
in an image selector. This uses the extended syntax for image selectors:

[cosubscript-list [, image-selector-spec-list]]

12

where cosubscript-list is the usual list of cosubscripts, and image-selector-spec-list contains a TEAM=team-
value specifier, where team-value is a value of type TEAM_TYPE that identifies the current team or an
ancestor. The image-selector-spec-list may also contain a STAT= specifier (this is described later,
under Fault tolerance).

When the TEAM= specifier is used the cosubscripts are treated as cosubscripts in the specified ancestor
team, and the image thus specified may lie within or outside the current team. If the access is to
an image that is outside the current team, care should be taken that the images are appropriately
synchronised; such synchronisation cannot be obtained by SYNC ALL or SYNC IMAGES, as they operate
within a team, but may be obtained by SYNC TEAM specifying an ancestor team, or by using locks or
events. The coarray in question must be established in the specified (current or ancestor) team.
Coarray association in CHANGE TEAM

It is possible to associate a local coarray-name in a CHANGE TEAM construct with a named coarray
outside the construct, changing the codimension and/or coextents in the process. This acts like a
limited kind of argument association; the local coarray-name has the type, parameters, rank and
array shape of the outside coarray, but does not have the ALLOCATABLE attribute. The syntax of the
CHANGE TEAM construct with one or more such associations is as follows:

CHANGE TEAM (team-value , coarray-association-list [, sync-stat-list J)
where coarray-association-list is a comma-separated list of

local-coarray-name [explicit-coshape-spec] => outer-coarray-name
and explicit-coshape-spec is

[[lower-cobound :] upper-cobound , J... [lower-cobound :] *
(The notation [something /... means something occurring zero or more times.)

The cobounds expressions are evaluated on execution of the CHANGE TEAM statement.

Use of this feature is not encouraged, as it is less powerful and more confusing than argument asso-
ciation.

e Fault tolerance features for coarrays are supported. These consist of the FAIL IMAGE statement, the named
constant STAT_FATILED_IMAGE in the intrinsic module ISO_FORTRAN_ENV, the STAT= specifier in an image selector,
and the intrinsic function FAILED_IMAGES.

The form of the FAIL IMAGE statement is simply
FAIL IMAGE

and execution of this statement will cause the current image to “fail”, that is, cease to participate in program
execution. This is the only way that an image can fail in NAG Fortran 7.0.

If all images have failed or stopped, program execution will terminate. NAG Fortran will display a warning
message if any images have failed.

An image selector has an optional list of specifiers, the revised syntax of an image selector being (where the
normal square brackets are literally square brackets, and the italic square brackets indicate optionality):

[cosubscript-list [, image-selector-spec-list]]

where cosubscript-list is a comma-separated list of cosubscripts, one scalar integer per codimension of the variable,
and image-selector-spec-list is a comma-separated containing at most one STAT=stat-variable specifier, and at
most one TEAM= or TEAM_NUMBER= specifier (these were described earlier). If the coindexed object being accessed
lies on a failed image, the value STAT_FAILED_IMAGE is assigned to the stat-variable, and otherwise the value zero
is assigned.

The intrinsic function FAILED_IMAGES returns an array of images that are known to have failed (it is possible
that an image might fail and no other image realise until it tries to synchronise with it). This function has the
form

FAILED_IMAGES(TEAM , KIND)

13

where
TEAM (optional) is a scalar TEAM_TYPE value that identifies the current or an ancestor team;
KIND (optional) is a scalar INTEGER constant expression that is a valid Integer kind number.

The result of the function is a vector of type INTEGER, or INTEGER(KIND) if KIND is present. The elements of
the array are in ascending order.

In order to be able to handle failed images, the following semantics apply:

— writing a value to a variable on a failed image is permitted (but may have no effect);
— reading a value from a variable on a failed image is permitted, but the result is unpredictable;

— execution of a CHANGE TEAM, END TEAM, FORM TEAM, SYNC ALL, SYNC IMAGES or SYNC TEAM statement with
a STAT= specifier is permitted, and performs the team change, creation, or synchronisation operation on
the non-failed images, assigning the value STAT_FAILED_IMAGE to the STAT= variable.

The latter effect in particular allows the program to form a team of all the non-failed images, and keep executing
normally. However, since the data on the failed images is lost (reading the data produces garbage), the program
would need to be carefully designed to “checkpoint” its work periodically, so that it can roll the computation
state back to a known good value to recover.

The fault tolerance features are in principle intended to permit recovery from hardware failure, with the FAIL
IMAGE statement allowing some testing of recovery scenarios. NAG Fortran 7.0 does not recover from hardware
failure.

The module IEEE_ARITHMETIC has new functions IEEE_NEXT_DOWN and IEEE NEXT_UP. These are elemental with
a single argument, which must be a REAL of an TEEE kind (that is, IEEE_SUPPORT _DATATYPE must return . TRUE.
for that kind of REAL). They return the next IEEE value, that does not compare equal to the argument, in the
downwards and upwards directions respectively, except that the next down from —oo is —oo itself, and the next
up from 400 is +sym{inf} itself. These functions are superior to the old IEEE_NEXT_AFTER function in that they
do not signal any exception unless the argument is a signalling NaN (in which case IEEE_INVALID is signalled).

For example, IEEE_NEXT_UP(-0.0) and IEEE_ NEXT_UP(+0.0) both return the smallest positive subnormal value
(provided subnormal values are supported), without signalling TEEE_UNDERFLOW (which IEEE_NEXT_AFTER does).

Similarly, TEEE_NEXT_UP (HUGE(0.0)) returns oo without signalling overflow.
The module IEEE_ARITHMETIC has new named constants IEEE_NEGATIVE_SUBNORMAL, IEEE_POSITIVE_SUBNORMAL,
and the new function TEEE_SUPPORT _SUBNORMAL. These are from Fortran 2018, and reflect the change of terminol-

ogy in the IEEE arithmetic standard in 2008. They are equivalent to the old functions IEEE_NEGATIVE_DENORMAL,
IEEE POSITIVE DENORMAL and IEEE_SUPPORT_DENORMAL.

The requirement that the FLAG_VALUE argument to IEEE_GET FLAG and IEEE_SET_FLAG, the HALTING argument to
IEEE GET_HALTING_MODE and IEEE_SET _HALTING_MODE, and the GRADUAL argument to IEEE_GET_UNDERFLOW_MODE
and IEEE_SET UNDERFLOW_MODE, be default LOGICAL has been dropped; any kind of LOGICAL is now permitted.

For example,

USE F90_KIND

USE IEEE_ARITHMETIC

LOGICAL(byte) flags(SIZE(IEEE_ALL))
CALL IEEE_GET_FLAG(IEEE_ALL,flags)

will retrieve the current IEEE flags into an array of one-byte LOGICALs.

Other Extensions

The VAX FORTRAN O0OPEN statement specifier ACCESS=’APPEND’ is now supported, as an aid to porting
old programs (it was superseded in 1991 by the POSITION=’APPEND’ specifier). It is equivalent to using
ACCESS="SEQUENTIAL’ ,POSITION=’APPEND’.

For example,

OPEN(17,FILE="my.log’ ,ACCESS=’"APPEND’)

14

has the same effect as
OPEN(17,FILE="my.log’ ,POSITION="APPEND’)

The VAX FORTRAN TYPE statement is now supported. This statement has identical syntax and semantics
to the PRINT statement, except that the keyword TYPE is used instead of PRINT. Some forms of this statement
where the format begins with a name are ambiguous with respect to a derived type definition, and those forms
are only treated as a TYPE statement if that name is used or declared earlier in the scoping unit; otherwise, it is
treated as a derived type definition.

For example,

TYPE *,’Hello’
is equivalent to

PRINT *,’Hello’

Processing a source file containing VAX FORTRAN TYPE statements with the enhanced polisher will turn all TYPE
statements into PRINT statements. The ordinary polisher will not change any TYPE statements; furthermore, if
one of the ambiguous forms is used, the remainder of the file will be incorrectly indented, as the ordinary polisher
does not have semantic analysis and therefore assumes the ambiguous form is the beginning of a type definition.

The “nX” edit descriptor is detected as an individual token when it is followed by another edit descriptor instead
of punctuation. This produces better error messages, and enables acceptance of the format with the —dusty
option. For example,

PRINT 1,42
1 FORMAT (7XI0)

will print

bbbbbbb42

where b represents a blank character. (This is not, and has never been, standard Fortran, but is a common
extension.)

Auto-skipping NAMELIST input is optionally available. The Fortran standard requires that when namelist input
is performed, the name after the ampersand in the input record must match the namelist group name (in the
READ statement). Normally, the NAG Fortran system raises an i/o error condition if the names do not match,
but when auto-skipping namelist input is in effect, instead it skips records until it reaches the end of the file or
finds a record that begins with an ampersand and the correct name.

For example, given the program

PROGRAM asnl
INTEGER x,y
NAMELIST/name/x,y
READ (* ,name)
PRINT *,’Result’,x,y
END PROGRAM

and the input data

&wrong x = 999 y = -999 /
&name x = 123 y = 456 /

with auto-skipping namelist it will print
Result 123 456

Auto-skipping namelist is controlled by runtime options. The environment variable NAGFORTRAN_RUNTIME_OPTIONS
contains a comma-separated list of runtime options; auto-skipping namelist is enabled by the option au-
toskip_namelist or log_autoskip_namelist. The latter option produces an informative message to standard
error, displaying where the namelist input occurred, for example:

[example.f90, line 5: Looking for namelist group NAME, skipping WRONG]

Auto-skipping namelist is not standard Fortran, but it is a very common extension.

15

8 Half precision floating-point

Half precision (16-bit) floating-point is supported for values and variables of type REAL and COMPLEX. This floating-point
kind conforms to the IEEE arithmetic standard (ISO/TEC/IEEE 60559:2011).

The intrinsic function SELECTED_REAL KIND(3) and intrinsic module function IEEE_SELECTED_REAL_KIND(3) return
the kind value for half precision. In —kind=byte mode, the value will be two; in —kind=sequential mode, it will be 16
(this unusual value was chosen to maintain upward compatibility of kind numbers).

The largest finite half-precision value is 65504.0, the smallest normal half-precision value is 0.00006103515625, and
the smallest subnormal value is 0.000000059604644775390625.

Scalar half-precision operations are evaluated in single precision, and only rounded to half precision when assigned to a
variable or passed as an actual argument to a non-intrinsic or non-mathematical procedure (e.g. SQRT is mathematical,
but NEAREST is not). This can be controlled by the —round_hreal option; if used, all half-precision operations will be
rounded to half precision, both at compile time and run time.

Because of all the conversions needed, half precision is slower than single precision; its sole benefit is halving the
memory and file storage requirements.

9 Additional error checking

e The —C=intouf now detects integer overflow in the intrinsic function INT when applied to COMPLEX values.

For example, in

CALL sub((128,0))

SUBROUTINE SUB(c)
USE iso_fortran_env
COMPLEX, INTENT(IN) :: c
PRINT *,INT(c,int8)

the conversion of the COMPLEX variable C to 8-bit INTEGER is out of range and will be reported with a message
similar to

Runtime Error: b6a.f90, line 10: Overflow converting 128.0 to INTEGER(int8)

e Common block storage sequence inconsistencies between program units in the same file are now detected, even
when the total size of the common block is the same in both places. For example, in

SUBROUTINE s1
COMMON/c/x,y,2
REAL x(5)
INTEGER y
CHARACTER z(4)

END SUBROUTINE

SUBROUTINE s2
COMMON/c/xx,2zz,yy
REAL xx(5)
INTEGER yy
CHARACTER zz(4)

END SUBROUTINE

a message similar to the following will be produced (the message has been wrapped for this document):

Error: test.f90: Definitions of COMMON block /C/ in program units S1 and S2 differ
at storage unit 6,

variable Y in S1 provides a numeric storage unit,

but variable ZZ in S2 provides a character storage unit

This error may be downgraded to a warning with the —dusty option.

16

10 Miscellaneous enhancements

e An empty source file, or a source file containing only comments, may now be compiled. A warning is produced.

e The —f2018 option requests Fortran 2018 semantics. This means suppressing extension messages for the use of
Fortran 2018 features, producing Obsolescent/Deleted messages for the use of features that Fortran 2018 has
made obsolescent or deleted, and making procedures RECURSIVE by default (the same as the —recursive option).

e The runtime option suppress_underflow_warning suppresses the usual warning on program termination if
the floating-point underflow flag is set. The runtime option underflow_warning requests production of the
usual warning on program termination if the floating-point underflow flag is set. These runtime options are set
in the environment variable NAGFORTRAN_RUNTIME OPTIONS. They override the appearance or non-appearance of
the —no_underflow_warning option at compilation time.

e There is a new polish option —dcolon_column=N to control the alignment of double colon in declaration and spec-
ification statements. Supplying —dcolon_column=0 is synonymous with option —nodcolon_column and performs
no alignment, which is the default.

For example, with the code
Subroutine s(x, y)
Integer, Intent (In) :: x
Real, Intent (Out) :: y(1)
Logical :: 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, 112, 113

y = (/ Real :: x /)
End Subroutine

the —dcolon_column=30 option produces

Subroutine s(x, y)

Integer, Intent (In) D

Real, Intent (Out) iy (1)

Logical :: 11, 12, 13, 14, 15, 16, 17, 18, 19, 110, 111, &
112, 113

y = (/ Real :: x /)
End Subroutine

e The precision unifier (“nagfor =unifyprecision”) now allows additional control over the level of conversion
it applies to floating-point and complex entities. To modify only those entities that don’t already have a kind
specifier, use —pu_floats=Default_Kinds.

For example, with the code

Use working_precision, Only: rp
Real (Kind=rp) :: x_single = real(42, kind=rp)
Double Precision :: x_double = 42.0D0O

applying the tool and using the —pu_floats=Default_Kinds option produces
Use working_precision, Only: rp
Use working_precision, Only: wp

Real (Kind=rp) :: x_single = real(42, kind=rp)
Real (Kind=wp) :: x_double = 42.0EO_wp

17

