NAG Fortran Compiler, Release 7.0

July 25, 2022

NAG Fortran Compiler
(©) 2020 The Numerical Algorithms Group Limited

All rights reserved. No part of this Manual may be reproduced, transcribed, stored in a retrieval system, translated into
any language or computer language or transmitted in any form or by any means, electronic, mechanical, photocopying,
recording or otherwise, except for the purpose of using the NAG Fortran Compiler.

The copyright owner gives no warranties and makes no representations about the contents of this Manual and specif-
ically disclaims any implied warranties of merchantability or fitness for any purpose.

The copyright owner reserves the right to revise this Manual and to make changes from time to time in its contents
without notifying any person of such revisions or changes.

10t* Edition — November 2019

NAG is a registered trademark of:

The Numerical Algorithms Group Limited
The Numerical Algorithms Group Inc
Nihon Numerical Algorithms Group KK

All other trademarks are acknowledged.

NAG Ltd Nihon NAG KK

30 St Giles’ Hatchobori Frontier Building 2F
OXFORD 4-9-9

OX1 3LE Hatchobori

United Kingdom Chuo-ku

Tel: +44 (0)1865 511245 (general) Tokyo

Tel: +44 (0)1865 311744 (support) 104-0032

Web: www.nag.com Japan
Tel: +81 (0)3 5542 6311
Fax: 481 (0)3 5542 6312
Web: www.nag-j.co.jp

NAG Inc

801 Warrenville Road, Suite 185
Lisle, IL 60532-4332

USA

Tel: +1 630 971 2337

Fax: +1 630 971 2706

Web: www.nag.com

NAG also has a number of distributors throughout the world. Please contact NAG for further details.

Contents

Introduction to the Compiler
Using the Compiler

Usage
Debugging with dbx90
Preprocessing with fpp

Extensions

Non-standard Extensions
Obsolete Extensions

Intrinsic Modules

Intrinsic Modules
Modern Fortran API to Posix

Standard Fortran 95

Fortran 95 Program Structure
Fortran 95 Expressions
Fortran 95 Statements

Fortran 95 Intrinsic Procedures

Fortran 2003 Extensions

Fortran 2003 Overview
Object-oriented Programming
ALLOCATABLE extensions

Other data-oriented enhancements
C interoperability

IEEE arithmetic support
Input/output Features
Miscellaneous Fortran 2003 Features

Fortran 2008 Extensions

SPMD programming with coarrays
Data declaration

Data usage and computation
Execution control

Intrinsic procedures and modules
Input/output extensions

Programs and procedures

Appendices

Mixing Fortran and C
ASCII Collating Sequence

Page

30
36

44
45

49
56

76
81
83
99

103
104
109
115
121
124
132
139

148
156
157
159
160
164
165

170
176

Page i

Introduction

1 Introduction to the Compiler

The NAG Fortran Compiler is based on the NAGWare f90 Compiler which was the world’s first Fortran 90 compiler.
The design goals of the development were to produce a compiler with the following characteristics:

e compiles standard Fortran to host-compatible C;

e good speed of compilation, reasonable efficiency of execution;

e good error checking, comprehensible error messages;

e full standard implementation, standard-conforming compiler (i.e. all constraints identified);

e modular construction;

e compiler written in C;

e maintainability, portability and re-usability.
The compiler is multi-pass; the passes have been kept distinct to improve maintainability and to allow re-use of the
components.
Pass 1: Lexical and syntactic analysis, build symbol table and abstract syntax tree.

Pass 2: Semantic analysis, annotate parse tree and fill in symbol table; all major error and constraint detection
takes place in this pass.

Pass 3: Code generation by parse tree transformation.
Pass 4: Code output, generate declarations and flatten transformed parse tree to C source code.
Pass 5: Compilation using the host operating system’s C compiler.

Pass 6: Linking to executable code using the host system’s linker, including linking in the Fortran run-time libraries.

1.1 Other Fortran-related Activities at NAG

NAG has released several Fortran-based numerical procedure libraries: the Fortran Library, SMP Library, Parallel
Library and the Fortran 90 Library. A number of implementations of these libraries, using the NAG compiler and
other compilers, are available.

NAG has supported the development and standardisation of Modern Fortran, participating both in ISO/IEC JTC1/SC22
Working Group 5, and the technical development committee INCITS/PL22.3. The head of the NAG compiler team,
Malcolm Cohen, is the current Project Editor of the ISO/IEC Fortran standard.

From this it can be seen that NAG is committed to Fortran.

1.2 This Manual

This is the documentation for the NAG Fortran Compiler. This is not intended to be a language description or tutorial,
but rather a guide to the use of the software and a quick reference for some of the features of the language.

The compiler is a full implementation of the Fortran 2003 programming language [ISO/IEC 1539-1:2004(E)], with
most of the features from the Fortran 2008 standard [ISO/IEC 1539-1:2010(E)] and some from the latest Fortran 2018
standard [ISO/IEC 1539-1:2018(E)].

Page 1

Using the Compiler

2 Usage

nagfor [mode] [option]... file...

3 Description

nagfor is the interface to the NAG Fortran Compiler system. The compiler translates programs written in Fortran
into executable programs, relocatable binary modules, assembler source files or C source files.

The mode determines the action performed, and can be one of

=C Compile (and/or link) C source files, acting as the companion processor; this passes options to the C
compiler that are suitable for the ABI and/or compatibility mode options specified, and differs from the
=compiler mode in that it does not set NAG-specific macro definitions or alter the #include file search
path to include the compiler library directory.

=compiler Compile (and/or link) the files; this is the default mode if none is specified.
=callgraph Produce a callgraph of the Fortran routines in the files (see the Producing a Call Graph section).
=depend Produce a dependency analysis of the Fortran files (see the Dependency Analysis section).

=epolish Pretty-print (polish) the Fortran files using the Enhanced Polisher (see the Enhanced Source File Pol-
ishing section).

=interfaces Produce a module or INCLUDE file containing procedure interfaces (see the Generating Interfaces section).

=polish Pretty-print (polish) the Fortran files (see the Source File Polishing section).

=unifyprecision
Unify the precision of floating-point and complex entities in the files (see the Unifying Precision section).

Options that do not apply to the current mode of operation (e.g. polish options when the mode is for compilation)
are ignored.

The mode can also be specified as —mode=mode; this may be useful if the user’s command processor has a special
meaning for equals signs (e.g. zsh).

4 File Types

A file ending in ‘.£90’ or ‘.£95’ is taken to be a Fortran free-form source file, a file ending in ‘.£’, ‘.for’ or ‘.ftn’
is taken to be a Fortran fixed-form source file; these assumptions can be overridden with the —fized or —free option.
A file ending in ‘.££90 or ‘.££95’ is taken to be a free-form file requiring preprocessing by fpp, and a file ending
in ‘.ff’ is taken to be a fixed-form file requiring preprocessing by fpp. On Unix, a file ending in ‘.F90’ or ‘.F95’ is
taken to be a free-form file requiring preprocessing by fpp, and a file ending in ‘.F’ is taken to be a fixed-form files
requiring preprocessing by fpp. (Note that on MacOS and Windows, the file system is not case-sensitive so uppercase
and lowercase letters are equivalent in filenames including in the suffixes.)

If a filename without a suffix is provided nagfor will look for a file with the suffix ‘.£95’, and if that does not exist,
the suffix ‘. £90’.

A file ending in ‘. ¢’ is taken to be a C source file. In the =compiler mode, this is assumed to be the output from the
compiler with the —S option, and the C compiler is passed —D and —I options suitable for compiling such a file. In
the =C mode, it is assumed to be a file for the companion processor; no —D is passed, and only —I options specified
by the user. In both cases, options are passed to the C compiler according to the ABI and compatibility mode options.

Non-intrinsic modules, INCLUDE files and #include files are expected to exist in the current working directory or in a
directory named by an —I option.

Page 2

Using the Compiler

5 Compiler Options

—-132 Increase the length of each fixed source form input line from 72 characters to 132 characters. This has no
effect on free source form input.

—abi=abi
(Linux x86-64 only) Specify the ABI to compile for, either 32 (the 32-bit ABI), or one of the 64-bit ABIs:
64c or 64t. The differences between the two 64-bit ABIs are as follows:

ABI Object size represented in Character length represented in
—abi=64t 64 bits 32 bits
—abi=64c 64 bits 64 bits

Programs compiled with —abi=382 will run on any x86 Linux system; those compiled with any 64-bit ABI
will only run on a 64-bit kernel.

The default is —abi=64t. The —abi=6/c option is compatible with the ABI used by Intel Fortran.

—abi=abi
(Windows only) Specify the ABI to compile for, either 32 (the 32-bit ABI) or 64 (the 64-bit ABI). The
default is —abi=64 on Windows x64; on 32-bit Windows the default is —abi=32 and the —abi=64 option
is not available.

—align=alignment
(MacOS only) Specify the alignment of variables and components, which must be one of:
natural (natural alignment for best performance; this can alter the interpretation of COMMON block or
SEQUENCE type layout in a non-standard-conforming manner), or

standard (use standard-conforming alignment; this is the default).

The whole program should be compiled with the same alignment option.

—Bbinding
Specify static or dynamic binding. This only has effect if specified during the link phase. The default is
dynamic binding. On SPARC and SG/Irix, these options are positional and can be used to selectively bind
some libraries statically and some dynamically. This option is not available on IBM z9 Open Edition.

—C Compile only (produce .o file for each source file), do not link the .o files to produce an executable file.
This option is equivalent to —otype=o0bj.

—C Compile with all but the most expensive runtime checks; this omits the —C'=alias, —C=dangling, —C=intovf
and —C=undefined options.
—C=check
Compile checking code according to the value of check, which must be one of:
alias (check for assignments to aliased dummy arguments),
all perform all checks except for —C=undefined),
array check array bounds),
bits check bit intrinsic arguments),

dangling check for dangling pointers),
do check DO loops for zero step values and
illicit modification of the index variable via host association),

(
(
(
calls (check procedure references),
(
(

intovf (check for integer overflow),

none (do no checking: this is the default),
present (check OPTIONAL references),
pointer (check POINTER references),
recursion (check for invalid recursion) or

undefined (check for undefined variables).

The —C=alias option will produce a runtime error when it is detected that assignment to a dummy argument
affects another dummy argument. At this release this is only detected for scalar dummy arguments.

The —C=dangling option will produce a runtime error when a dangling pointer is used; additionally, if the
runtime option ‘show_dangling’ is set, a warning will be produced at the time the pointer becomes dangling
(see Runtime Environment Variables for further information).

Page 3

Using the Compiler

—coarray

The —C'=undefined option is subject to a number of limitations; in particular, it is not binary compatible
with Fortran code compiled without that option, and is not compatible with calling C code via a BIND(C)
interface. See the Undefined Variable Detection section for further details.

This option is short for —coarray=cosmp.

—coarray=mode

Set the coarray operation mode to mode, which must be single for Single Image mode, or cosmp for
Co-SMP mode; the option is not case-sensitive. The default is —coarray=single.

In Single Image mode (—coarray=single), all coarray syntax is accepted, but execution will not be in parallel:
only a single image is supported.

In Co-SMP mode (—coarray=cosmp), parallel execution of multiple images on an SMP machine is supported.
The maximum number of images in this mode is 1000. If the —num_images=N option is used, the default
number of images to execute is N; with —num_images=auto, the default number of images is the number
of hardware threads available on the processor. Note that the number of images may exceed the number
of hardware threads, but doing so will only improve performance if images spend a lot of time waiting
(e.g. for synchronisation or input/output). The —num_images= option may be overridden by the runtime
environment variable NAGFORTRAN _NUM_IMAGES.

Code that uses any coarray features (coarray syntax or image control statements) or that has any common
blocks or global (saved or initialised) variables, and that is compiled with —coarray=single, must never
be executed in Co-SMP mode, as it will not work correctly. Code that avoids those features, and which is
intended to work both in Co-SMP mode and single image mode, should be compiled with the —thread_safe
option.

The —coarray=cosmp option cannot be used at the same time as —gline or —openmp. The —coarray=cosmp
option may be specified with the —C'=undefined option, but it will automatically disable the latter option.

—colour Colour the message output from the compiler using ANSI escape sequences and the default foreground
colouring scheme which is: red for error messages (including fatal errors), blue for warning messages and
green for information messages.

—colour=scheme
Colour the message output from the compiler according to the specified scheme. This is a comma-separated
list of colour specifications, each consisting of a message category name (“error”, “warn” or “info”) followed
by a colon and the foreground colour name, optionally followed by a plus sign and the background colour
name. The colouring for unspecified categories will be the default.
Colours are: black, red, green, yellow, blue, magenta, cyan and white.
E.g. —colour=error:red+blue,warn:cyan,info:magenta+yellow
would be a rather garish colour scheme.

—compatible

Make external linkages compatible with other compilers where possible; on Windows this is Microsoft
Fortran (32-bit mode) or Intel Fortran (64-bit mode), on MacOS and Linux this is g77, g95 and gfortran,
and on other systems this is the operating system vendor’s compiler. This affects the naming convention and
procedure calling convention (for example, on Windows it causes use of the “STDCALL” calling convention
that is commonly used for most DLLs, and the names are in upper case with no added trailing underscore).
On Windows in 64-bit mode, —compatible is always in effect.

—convert=jformat

Page 4

Set the default conversion mode for unformatted files to format. This format may be overridden by an
explicit CONVERT= specifier in the OPEN statement, or by the environment variable FORT_CONVERTn (where
n is the unit number). The value of format must be one of the following (not case-sensitive):

Using the Compiler

—Dname

—d_lines

—dcfuns

—double

—dryrun

—dusty

Format Description

BIG_ENDIAN synonym for BIG_IEEE

BIG_IEEE_DD big-endian with IEEE floating-point, quad precision is double-double
BIG_IEEE big-endian with IEEE floating-point, including quad precision
BIG_NATIVE big-endian with native floating-point format

LITTLE_ENDIAN synonym for LITTLE_IEEE
LITTLE_IEEE DD little-endian with IEEE floating-point, quad precision is double-double

LITTLE_IEEE little-endian with IEEE floating-point, including quad precision
LITTLE NATIVE little-endian with native floating-point format
NATIVE no conversion (the default)

Defines name to fpp as a preprocessor variable. This only affects files that are being preprocessed by fpp.

In fixed form only, accept lines beginning with “D” as normal Fortran statements, replacing the D with a
space. Without this option, such lines are treated as comments.

Enable recognition of non-standard double precision complex intrinsic functions. These act as specific
versions of the standard generic intrinsics as follows:

Non-standard Equivalent Standard Fortran Generic Intrinsic Function

CDABS (4) ABS(A)

DCMPLX(X,Y) CMPLX(X,Y,KIND=KIND(0dO))
DCONJG(Z) CONJG(Z)

DIMAG(Z) ATMAG(Z)

DREAL(Z) REAL(Z) or DBLE(Z)

Double the size of default INTEGER, LOGICAL, REAL and COMPLEX. Entities specified with explicit kind num-
bers or byte lengths are unaffected. If quadruple precision REAL is available, the size of DOUBLE PRECISION
is also doubled.

Show but do not execute commands constructed by the compiler driver.

Allows the compilation and execution of “legacy” software by downgrading the category of common errors
found in such software from “Error” to “Warning” (which may then be suppressed entirely with the —w
option). This option disables —C'=calls, and also enables Hollerith i/o (see the —hollerith_io option).

—encoding=charset

—english

—£2003

—£2008
—£2018

—fixed

Specifies that the encoding system of the Fortran source files is charset, which must be one of ISO_Latin_1,
Shift_JIS or UTF _8. If this option is not specified, the default encoding is UTF-8 for Fortran source files
that begin with a UTF-8 Byte Order Mark, and ISO Latin-1 (if the language setting is English) or Shift-JIS
(if the language setting is Japanese) for other Fortran source files.

Produce compiler messages in English (default).

Preprocess only, do not compile. Each file that is preprocessed will produce an output file of the same
name with the suffix replaced by .f, .£90 or .£95 according to the suffix of the input file. This option is
equivalent to —otype=Fortran.

Use the Fortran 77/90 version of the SIGN intrinsic instead of the Fortran 95 one (they differ in the treatment
of negative zero).

Specify that the base language is Fortran 95. This only affects extension message generation (Fortran 2003
and 2008 features will be reported as extensions).

Specify that the base language is Fortran 2003. This only affects extension message generation (Fortran
2008 features will be reported as extensions).

Specify that the base language is Fortran 2008. This is the default.
Specify that the base language is Fortran 2018. This implies the —recursive option.

Interpret all Fortran source files according to fixed-form rules.

Page 5

Using the Compiler

—float-store

—fpp

(Gnu C based systems only) Do not store floating-point variables in registers on machines with floating-point
registers wider than 64 bits. This can avoid problems with excess precision.

Preprocess the source files using fpp even if the suffix would normally indicate an ordinary Fortran file.

—framework f

—free
-
—g90

—gline

—help

(MacOS only) Use framework f during linking.
Interpret all Fortran source files according to free-form rules.
Produce information for interactive debugging by the host system debugger.

Produce debugging information for dbx90, a Fortran 90 aware front-end to the host system debugger. This
produces a debug information (.g90) file for each Fortran source file. This option must be specified for both
compilation and linking.

Enables automatic garbage collection of the executable program. This option must be specified for both
compilation and linking, and is unavailable on IBM z9 OpenEdition, MacOS, and Windows. It is incom-
patible with the —thread_safe and —mtrace options. For more details see the Automatic Garbage Collection
section.

Compile code to produce a traceback when a runtime error message is generated. Only routines compiled
with this option will appear in such a traceback. This option increases both executable file size and execution
time. It is incompatible with the —thread_safe, —openmp and —coarray=cosmp options.

For example:

Runtime Error: Invalid input for real editing

Program terminated by I/0 error on unit 5 (Input_Unit,Formatted,Sequential)
main.f90, line 28: Error occurred in READ_DATA

main.f90, line 57: Called by READ_COORDS

main.f90, line 40: Called by INITIAL

main.f90, line 13: Called by $main$

Display a one-line summary of the options available for the current mode (=compiler, =callgraph, =depend,
=epolish, =interfaces, =polish or =unifyprecision).

—hollerith_io

Enable Fortran-66 compatible input/output of character data stored in numeric variables using the A edit
descriptor. This was superseded by the CHARACTER datatype in Fortran 77.

—I pathname

Add pathname to the list of directories which are to be searched for module information (.mod) files and
INCLUDE files. The current working directory is always searched first, then any directories named in —I
options, then the compiler’s library directory (see the —Q@path option).

Set the size of default INTEGER and LOGICAL to 64 bits. This can be useful for switching between libraries
that have 32-bit integer arguments (on one platform) and 64-bit integer arguments (on another platform),
but which do not provide a named constant with the necessary KIND value.

This has no effect on default REAL and COMPLEX sizes, so the compiler is not standard-conforming in this
mode.

—indirect file

Read the contents of file as additional arguments to the compiler driver. This option may also be given by
“@file”; note in this case there is no space between the ‘Q’" and the file name.

In an indirect file, arguments may be given on separate lines; on a single line, multiple arguments may be
separated by blanks. A blank can be included in an option or file name by putting the whole option or file
name in quotes ("); this is the only quoting mechanism. An indirect file may reference other indirect files.

—ieee=mode

Page 6

Set the mode of IEEE arithmetic operation according to mode, which must be one of full, nonstd or stop.

full enables all IEEE arithmetic facilities including non-stop arithmetic.

Using the Compiler

nonstd Disables non-stop arithmetic, terminating execution on floating overflow, division by zero or in-
valid operand. If the hardware supports it, this also disables IEEE gradual underflow, producing
zero instead of a denormalised number; this can improve performance on some systems.

stop enables all IEEE arithmetic facilities except for non-stop arithmetic; execution will be terminated
on floating overflow, division by zero or invalid operand.

The —ieece option must be specified when compiling the main program unit, and its effect is global. The
default mode is —ieece=stop. For more details see the IEEE 754 Arithmetic Support section. This option is
not available on IBM z9 Open Edition with hexadecimal floating point.

—info Request output of information messages. The default is to suppress these messages.

—kind=option
Specify the kind numbering system to be used; option must be one of byte, sequential or unique.

For —kind=byte, the kind numbers for INTEGER, REAL and LOGICAL will match the number of bytes of
storage (e.g., default REAL is 4 and DOUBLE PRECISION is 8). Note that COMPLEX kind numbers are the same
as its REAL components, and thus half of the total byte length in the entity.

For —kind=sequential (the default), the kind numbers for all datatypes are numbered sequentially from 1,
increasing with precision (e.g., default REAL is 1 and DOUBLE PRECISION is 2).

For —kind=unique, the kind numbers are unique across all data types, so that a kind number for one data
type cannot be accidentally used for another data type (except that COMPLEX and REAL are still the same).
These kind numbers are all greater than 100 so do not match byte sizes either.

This option does not affect the interpretation of byte-length specifiers (an extension to Fortran 77).

—lz Link with library libz.a. The linker will search for this library in the directories specified by —Ldir options
followed by the normal system directories (see the 1d(1) command).

—Ldir Add dir to the list of directories for library files (see the 1d(1) command).

-M Produce module information files (.mod files) only. This option is equivalent to —otype=mod.

—max_internal_proc_instances=N
Set the maximum number of simultaneously active host instances of an internal procedure that is being
passed as an actual argument, or assigned to a procedure pointer, to N. The default maximum is normally
30, and increased to 160 if either the —openmp or —thread_safe options are used.

—max_parameter_size=N
Set the maximum size of a PARAMETER to N MB (megabytes). N must be in the range 1 to 1048576 (1MB
to 1TB); the default is 50 MB.

—maxcontin=N
Increase the limit on the number of continuation lines from 255 to N. This option will not decrease the
limit below the standard number.

—mdir dir
Write any module information (.mod) files to directory dir instead of the current working directory.

—message_encoding=charset
Set the encoding scheme for compiler messages to charset, which must be one of ISO_Latin_1, Shift _JIS
or UTF_8 (not case-sensitive). The —message_encoding=ISO_Latin_1 option is incompatible with the
—nihongo option. The default message encoding is Shift_JIS on Windows and UTF_8 on other systems.

—mismatch
Downgrade consistency checking of procedure argument lists so that mismatches produce warning messages
instead of error messages. This only affects calls to a routine which is not in the current file; calls to a
routine in the file being compiled must still be correct. This option disables —C=calls.

—mismatch_all
Further downgrade consistency checking of procedure argument lists so that calls to routines in the same
file which are incorrect will produce warnings instead of error messages. This option disables —C'=calls.

—mtrace Trace memory allocation and deallocation. This option is a synonym for —mtrace=on.

Page 7

Using the Compiler

—mtrace=trace_opt_list
Trace memory allocation and deallocation according to the value of trace_opt_list, which must be a comma
separated list of one or more of:

address (display addresses),

all (all options except for off),

line (display file/line info if known),

off (disable tracing output),

on (enable tracing output),

paranoia (protect memory allocator data structures against the user program),
size (display size in bytes) or

verbose (all options except for off and paranoia).

This option should be specified during both compilation and linking, and is incompatible with the —gc
option. For more details see the Memory Tracing section. The —mirace=paranoia option is not available
on IBM z9 Open Edition.

—nan Initialise REAL and COMPLEX variables to IEEE Signalling NaN, causing a runtime crash if the values are
used before being set. This affects local variables, module variables, and INTENT(OUT) dummy arguments
only; it does not affect variables in COMMON or EQUIVALENCE. This option is not available on IBM z9 Open
Edition with hexadecimal floating point.

—nihongo
Produce compiler messages in Japanese (if necessary, the encoding can be changed by the —message_encoding=
option). This option is not available on IBM z9 Open Edition.

—no_underflow_warning
Suppress the warning message that normally appears if a floating-point underflow occurred during execution.
This option is only effective if specified when compiling the main program.

—nocheck_modtime
Do not check for .mod files being out of date.

—nomod Suppress module information (.mod) file production. Combining this with —M will produce no output
(other than error and warning messages) at all, equivalent to —otype=none.

—noqueue
If no licence for the compiler is immediately available, exit with an error instead of queueing for it.

—num _images=N
Set the expected number of images the program will run with to N, which should be a number in the range
1 to 1000, ‘auto’, or ‘unknown’.

In Single Image mode (—coarray=single), the only affect is on analysis of constant cosubscripts: if N is
numeric, and they evaluate to an image index greater than N, an error will be produced. The effect of
—num_images=unknown (or —num_images=auto) is to suppress such analysis.

In CoSMP mode (—coarray=cosmp), the effect is to specify the default number of images at execution
time; this may be overridden by the runtime environment variable NAGFORTRAN_NUM_IMAGES. The effect of
—num_images=auto (or —num_images=unknown) is to set the default number of images to the number of
hardware threads on the processor. This option takes effect when compiling the main program.

The default in —coarray=single mode is —num_images=1, and the default in —coarray=smp mode is
—num_images=auto.

—o output
Name the output file output instead of the default. If an executable is being produced the default is a.out;
otherwise it is file.o with the -c option, file.c with the -S option, and file.f, file.f90 or file.f95 with the -F
option, where file is the base part of the source file (i.e. with the suffix removed).

-0 Normal optimisation, equivalent to —02.
—-ON Set the optimisation level to N. The optimisation levels are:

—0O0 No optimisation. This is the default, and is recommended when debugging.

Page 8

Using the Compiler

—01 Minimal quick optimisation.
—02 Normal optimisation.
—Q03 Further optimisation.

—04 Maximal optimisation.

—QOassumed
This is a synonym for —QOassumed=contig.

—Qassumed=shape
Optimises assumed-shape array dummy arguments according to the value of shape, which must be one of

always_contig
Optimised for contiguous actual arguments. If the actual argument is not contiguous a runtime
error will occur (the compiler is not standard-conforming under this option).

contig Optimised for contiguous actual arguments; if the actual argument is not contiguous (i.e. it is
an array section) a contiguous local copy is made. This may speed up array section accessing
if a sufficiently large number of array element or array operations is performed (i.e. if the cost
of making the local copy is less than the overhead of discontiguous array accesses), but usually
makes such accesses slower. Note that this option does not affect dummy arguments with the
TARGET attribute; these are always accessed via the dope vector.

section Optimised for low-moderate accesses to array section (discontiguous) actual arguments. This is
the default.

Note that CHARACTER arrays are not affected by these options.

—Oblock=N
Specify the dimension of the blocks used for evaluating the MATMUL intrinsic. The default value (only for
—01 and above) is system and datatype dependent.

—Onopropagate
Disable the optimisation of constant propagation. This is the default for —O1 and lower.

—Onoteams
Generate coarray access code assuming that teams are not being used. This will produce incorrect results
if executed while a CHANGE TEAM construct is active.

—Opropagate
Enable the optimisation of constant propagation. This is the default for —02 and higher.

—Orounding
Specify that the program does not alter the default rounding mode. This enables the use of faster code for
the ANINT intrinsic.

—Ounroll=N
Specify the depth to which simple loops and array operations should be unrolled. The default is no unrolling
(i.e. a depth of 1) for —O0 and —O1, and a depth of 2 for —O and higher optimisation levels. It can be
advantageous to disable the Fortran compiler’s loop unrolling if the C compiler normally does a very good
job itself — this can be accomplished with —Ounroll=1.

—Ounsafe
Perform possibly unsafe optimisations that may depend on the numerical stability of the program. On IBM
z9 Open Edition this option, in conjunction with —0/, passes NOSTRICT to the C compiler.

—openmp
Recognise OpenMP directives and link with the OpenMP support library. For more details see the OpenMP
Support section. This option is incompatible with the —coarray=smp option.

—otype=filetype
Specify the type of output file required to filetype, which must be one of
c (C source file),
exe (executable file),
fortran (Fortran source file),
mod (module information file),
none (no output file),
obj (object file).
The —c, —F and —M options are equivalent to —otype=o0bj, —otype=Fortran and —otype=mod respectively.

Page 9

Using the Compiler

—pic

—PIC

—Qpath

Compile code to generate profiling information which is written at run-time to an implementation-dependent
file (usually gmon.out or mon.out). An execution profile may then be generated using gprof. This option
must be specified for compilation and linking and may be unavailable on some implementations.

Produce position-independent code (small model), for use in a shared library. If the shared library is too
big for the small model, use —PIC'. This option is not available on IBM z9 Open Edition.

Produce position-independent code (large model), for use in a shared library. This option is not available
on IBM z9 Open Edition.

pathname

Change the compiler library pathname from its default location to pathname. (The default location on
Unix is usually ‘/usr/local/lib/NAG Fortran’ or ‘/opt/NAG_Fortran/1ib’) This option is unnecessary
on Windows as the installed location is automatically detected.

Double the size of default REAL and COMPLEX, and on machines for which quadruple-precision floating-point
arithmetic is available, double the size of DOUBLE PRECISION (and the non-standard DOUBLE COMPLEX).
REAL or COMPLEX specified with explicit KIND numbers or byte lengths are unaffected — but since the KIND
intrinsic returns the correct values, COMPLEX (KIND(0d0)) on a machine with quad-precision floating-point
will correctly select quad-precision COMPLEX.

This has no effect on INTEGER sizes, and so the compiler is not standard-conforming in this mode.

Note: This option has been superseded by the —double option which doubles the size of all numeric data
types.

—recursive

Specifies that procedures are RECURSIVE by default. This option is implied by the —f2018 option.

—round_hreal

—S

—save

—strict95

—target=

Page 10

Round all half precision operations to half precision. Without this option, half precision expressions are
evaluated in single precision and only rounded to half precision when being assigned to a variable or passed
as an actual argument to a non-intrinsic or non-mathematical procedure.

This option affects compile-time evaluation as well as runtime evaluation.

Strip symbol table information from the executable file. This option is only effective if specified during the
link phase.

Produce assembler (actually C source code). The resulting .c file should be compiled with the NAG Fortran
compiler, not with the C compiler directly. This option is equivalent to —otype=c.

This is equivalent to inserting the SAVE statement in all subprograms which are not pure, not declared
RECURSIVE, and not RECURSIVE by default (see the —recursive option). It thus causes all non-automatic
local variables in such subprograms to be statically allocated. It has no effect on variables in BLOCK
constructs.

Produce obsolescence warning messages for use of ‘CHARACTER*’ syntax. This message is not produced by
default since many programs contain this syntax.

machine
Specify the machine for which code should be generated and optimised.

o For x86-32 (x86-compatible 32-bit mode compilation on Linux and Windows), machine may be one of

i486, 1586, 1686, pentium2, pentium3, pentium4, prescott
the specified Intel processor,

k6, k6-2, k6-3, k6-4, athlon, athlon-4, athlon-xp, athlon-mp
the specified AMD processor,

pentium (equivalent to i586) or

pentiumpro (equivalent to i686).
The default is to compile for pentium4 on Linux, and prescott on Windows.

e For x86-64 (x86-compatible 64-bit mode compilation on Linux, MacOS and Windows), machine may
be athlon64, nocona, or core2.

e For Sun/SPARC, machine may be one of

Using the Compiler

v7 SPARCstation 1 et al,
V8 SPARCstation 2 et al,
super SuperSPARC,

ultra UltraSPARC or

native the current machine.

The default is to compile for SPARC V7.

Note that programs compiled for later versions of the architecture may not run, or may run much
more slowly, on an earlier machine. The —target=native option is not available with gcc.

e For HP9000/700, machine may be one of

2.0 the specified revision of the PA-RISC architecture (default) or
native the current machine.

—tempdir directory
Set the directory used for the compiler’s temporary files to directory. The default is to use the directory
named by the TMPDIR environment variable, or if that is not set, /tmp on Unix-like systems and the Windows
temporary folder on Windows.

—thread_safe
Compile code for safe execution in a multi-threaded environment. This must be specified when compiling
and also during the link phase. It is incompatible with the —gc and —gline options.

—time Report execution times for the various compilation phases.

—u Specify that IMPLICIT NONE is in effect by default, unless overridden by explicit IMPLICIT statements.

—u=sharing
Specify default sharing of NONE in OpenMP PARALLEL and TASK constructs (including in combined constructs
such as PARALLELDO). This has the same effect as the DEFAULT (NONE) clause, unless overridden by an explicit
DEFAULT(. ..) directive.

—unsharedrts
Bind with the unshared (static) version of the Fortran runtime system; this allows a dynamically linked
executable to be run on systems where the NAG Fortran Compiler is not installed. This option is only
effective if specified during the link phase.

—v Verbose. Print the name of each file as it is compiled.

-V Print version information about the compiler.

-w Suppress all warning messages. This option is a synonym for —w=all.
—w=class

Suppress the warning messages specified by class, which must be one of all, alloctr, obs, ques, uda, uei,
uep, uip, ulv, unreffed, unused, uparam, usf, usy, x77 or x95.

—w=all suppresses all warning messages;

—w=alloctr suppresses warning messages about the use of allocatable components, dummy arguments
and functions;

—w=obs suppresses warning messages about the use of obsolescent features;

—w=ques suppresses warning messages about questionable usage;

—w=uda suppresses warning messages about unused dummy arguments;

—w=uei suppresses warning messages about unused explicit imports;

—w=uep suppresses warning messages about unused external procedures;

—w=uip suppresses warning messages about unused intrinsic procedures;

—w=ulv suppresses warning messages about unused local variables;

—w=unreffed suppresses warning messages about variables set but never referenced;

—w=unused suppresses warning messages about unused entities — this is equivalent to ‘—w=uda
—w=uei —w=uep —w=uip —w=ulv —w=uparam —w=usf —w=usy’;

—w=uparam suppresses warning messages about unused PARAMETERs;

Page 11

Using the Compiler

—w=usf suppresses warning messages about unused statement functions;
—wW=usy suppresses warning messages about unused symbols;
—-w=x77 suppresses extension warnings for obsolete but common extensions to Fortran 77 — these

are TAB format, byte-length specifiers, Hollerith constants and D lines;

—w=x95 suppresses extension warnings for extensions to modern Fortran (not just Fortran 95) that
are not part of any Fortran standard.

—Woptions
The —W option can be used to specify the path to use for a compilation component or to pass an option
directly to such a component. The possible combinations are:

—WO0=path Specify the path used for the Fortran Compiler front-end. Note that this does not affect
the library directory; the —@Qpath option should be used to specify that.

—Wc=path Specify the path to use for invoking the C compiler; this is used both for the final stage
of compilation and for linking.

—Wc,option Pass option directly to the host C compiler when compiling (producing the .o file). Mul-
tiple options may be specified in a single —We, option by separating them with commas.

—Wl=path Specify the path to use for invoking the linker (producing the executable).

—Wl,option Pass option directly to the host C compiler when linking (producing the executable). Mul-
tiple options may be specified in a single —WI, option by separating them with commas.
A comma may be included in an option by repeating it, e.g. —WI, -filelist=filel,,file2,,file3
becomes the linker option —filelist=file1,file2,file3.

—Wp=path Specify the path to use for invoking the fpp preprocessor.
—Wp,option Pass option directly to fpp when preprocessing.

—Warn=class
Produce additional warning messages specified by class, which must be one of:

allocation warn if an intrinsic assignment might cause allocation of the variable (or a subcomponent
thereof) being assigned to;

constant_coindexing
warn if an image selector has constant cosubscripts;

reallocation warn if an intrinsic assignment might cause reallocation of an already-allocated variable
(or a subcomponent thereof) being assigned to;

subnormal warn if an intrinsic operation or function with normal operands produces a subnormal
result (reduced precision, less than TINY(...)).

Reallocation only occurs when the shape of an array, the value of a deferred type parameter, or the dynamic
type (if polymorphic), differs between the variable (or subcomponent) and the expression (or the corre-
sponding subcomponent). Allocation can occur also when the variable (or subcomponent) is not allocated
prior to execution of the assignment (except for broadcast assignment). Note that —Warn=allocation thus
subsumes —Warn=reallocation.

—wmismatch=proc-name-list
Specify a list of external procedures for which to suppress argument data type and arrayness consistency
checking. The procedure names should be separated by commas, e.g. —wmismatch=p_one,p2. Unlike
the —mismatch option, this only affects data type and arrayness checking, and no warning messages are
produced.

—xlicinfo
Report on the availability of licences for the compiler instead of compiling anything. Also report the exact
version of Kusari being used.

—XS (Sun/SPARC option only) Store the symbol tables in the executable (otherwise debugging is only possible
if the object files are kept).

Page 12

Using the Compiler

6 Files

file.a Library of object files.

file.c C source file.

file.f Fortran source file in fixed format (obsolete).

file.f90 Fortran source file in free format.

file.f95 Fortran source file in free format.

file ff Preprocessor source file for fixed-form Fortran (obsolete).
file.F (Unix) Preprocessor source file for fixed-form Fortran (obsolete).
file.ff90 Preprocessor source file for free-form Fortran.

file.F90 (Unix) Preprocessor source file for free-form Fortran.
file .ff95 Preprocessor source file for free-form Fortran.

file.F95 (Unix) Preprocessor source file for free-form Fortran.

name.mod Compiled module information file; name is the name of the module in lower case.

file.o Object file

/opt/NAG _Fortran/lib
Default NAG Fortran Compiler library directory on Sun Solaris (see —Qpath); referred to as library
hereafter.

/usr/local/lib/NAG _Fortran
Default NAG Fortran Compiler library directory on other Unix-based operating systems.

C:\Program Files\NAG\EFBuilder 7.0\nagfor\lib
Default NAG Fortran Compiler library directory on 32-bit Windows.

C:\Program Files (x86)\NAG\EFBuilder 7.0\nagfor\lib
Default NAG Fortran Compiler library directory on 64-bit Windows.

library /190 _iostat.f90
Source code for the £90_iostat module.

library/£90 kind.f90
Source code for the £90_kind module.

library/£90_stat.f90
Source code for the £90_stat module.

library/£90_util.f90
A sample Fortran 90 program that displays implementation-specific information

library/iso_fortran_env.f90
Source code for the iso_fortran_env module.

library/nagfmcheck.f90
Source code for the nagfmcheck program, see the Memory Tracing section.

7 Compilation Messages

The messages produced by the NAG Fortran Compiler itself during compilation are intended to be self-explanatory.
The linker, or more rarely the host C compiler, may produce occasional messages.

Messages produced by the compiler are classified by severity level; these levels are:

Info informational message, noting an aspect of the source code in which the user may be interested.

Page 13

Using the Compiler

Warning the source code appears likely to be in error.

Questionable
some questionable usage has been found in the source code which may indicate a programming error.
This has the same severity as “warning”.

Extension some non-standard-conforming source code has been detected but has successfully been compiled as an
extension to the language. This has the same severity as “warning”.

Obsolescent
some archaic source code has been detected which although standard-conforming was classified as obso-
lescent by the Fortran standard (selected according to the —f95, —f2008 and —f2008 options). This has
the same severity as “warning”.

Deleted feature used

a feature that was present in an older Fortran standard but deleted from the Fortran standard selected
by a —fN option was used. This has the same severity as “warning”.

Error the source code does not conform to the Fortran standard or does not make sense. Compilation continues
after recovery.

Fatal a serious error in the user’s program from which the compiler cannot recover, the compilation is imme-
diately terminated.

Panic an internal inconsistency is found by one of the compiler’s self-checks; this is a bug in the compiler itself
and NAG should be notified.

8 Compiler Limits

Item Limit

Maximum INCLUDE file nesting 20

Maximum number of INCLUDE file references per compilation 2047

Maximum DATA-implied-DO loop nesting 99

Maximum array-constructor-implied-DO loop nesting 99

Maximum number of dummy arguments 32767

Maximum number of arguments to MIN and MAX 100

Maximum character length (except as below) 2147483647
Maximum character length (64-bit Windows and -abi=64c Linux) | 1099511627775 (29-1)
Maximum array size (32-bit systems) 2147483647 bytes
Maximum array size (64-bit systems) 1 TiB

Maximum unit number 2147483647
Maximum input/output record length 2147483647 bytes

9 Input/Output Information

Item Value

Standard error (stderr) unit number 0

Standard input (stdin) unit number 5

Standard output (stdout) unit number 6

Default maximum record length for formatted output 1024 characters
Default maximum record length for unformatted output | 2147483647 bytes

The default directory used for files opened with STATUS=’>SCRATCH’ is ‘/tmp’ on Unix and the Windows temporary
directory on Windows. This default may be overridden with the TMPDIR environment variable.

Page 14

Using the Compiler

10 OpenMP Support

OpenMP 3.1 is supported.

When using the IEEE arithmetic support modules, the IEEE modes (rounding, halting and underflow) are propagated
into spawned OpenMP threads at the beginning of a PARALLEL construct, and any IEEE flag that are set by an OpenMP
thread is passed back to the parent thread at the end of the PARALLEL construct.

The following table lists the OpenMP environment variables with their default values and, if applicable, their limits.

Environment Variable Default Limits

OMP_NUM_THREADS number of cores | 1-32768

OMP_DYNAMIC False true or false

OMP_NESTED False true or false

OMP_STACKSIZE 0 <1GB (32-bit) or 16GB (64-bit)
OMP_WAIT_POLICY None active or passive
OMP_MAX_ACTIVE_LEVELS 1 1-64

OMP_THREAD_LIMIT 32768 1-32768

Note that although the NAG runtime supports up to 32768 threads, operating system limits may prevent usage of so
many.

OpenMP is not compatible with the —C=undefined and —gline options.

11 Automatic File Preconnection

All logical unit numbers are automatically preconnected to specific files. These files need not exist and will only be
opened or created if they are accessed with READ or WRITE without an explicit OPEN. By default the specific filename
for unit n is fort.n; however if the environment variable FORTnn exists its value is used as the filename. Note that
there are two digits in this variable name, e.g. the variable controlling unit 1 is FORTO1 whereas the default filename
is ‘fort.1’ (unless the prefix has been changed, see the description of module FOO_PRECONN_I0).

A file preconnected in this manner is opened with ACCESS=’>SEQUENTIAL’. If the initial READ or WRITE is an unformatted
i/o statement, it is opened with FORM=’UNFORMATTED’ otherwise it is opened with FORM=’FORMATTED’. By default a
formatted connection is opened with BLANK="NULL’ and POSITION=’REWIND’ (see module F9O_PRECONN_IO).

Automatic preconnection applies only to the initial use of a logical unit; once CLOSEd the unit will not be reconnected
automatically but must be explicitly OPENed.

Note that this facility means that it is possible for a READ or WRITE statement with an IOSTAT= clause to receive an
i/o error code associated with the implicit OPEN.

12 IEEE 754 Arithmetic Support

If no floating-point option is specified, any floating divide-by-zero, overflow or invalid operand exception will cause
the execution of the program to be terminated (with an informative message and usually a core dump). Occurrence
of floating underflow may be reported on normal termination of the program. On hardware supporting IEEE 754
standard arithmetic gradual underflow with denormalised numbers will be enabled. Note that this mode of operation
is the only one available on hardware which does not support IEEE 754.

If the —ieee=full option is specified, non-stop arithmetic is enabled; thus REAL variables may take on the values
+Infinity, —Infinity and NaN (Not-a-Number). If any of the floating exceptions listed above are detected by the
hardware during execution, this fact will be reported on normal termination. The —ieee=full option must be specified
when compiling the main program and has global effect; that is, it affects the entire executable program.

If the —ieee=nonstd option is specified, floating-point exceptions are handled in the default manner (i.e. execution
is terminated). However, gradual underflow is not enabled, so results which would have produced a denormalised
number produce zero instead. This option can only be used on hardware for which this mode of operation is faster.
Like —ieee=full, the —ieee=nonstd option must be specified when compiling the main program and has global effect.

Page 15

Using the Compiler

13 Half precision floating-point

Half precision (16-bit) floating-point is supported for values and variables of type REAL and COMPLEX. This floating-point
kind conforms to the IEEE arithmetic standard (ISO/IEC/IEEE 60559:2011).

The intrinsic function SELECTED_REAL KIND(3) and intrinsic module function IEEE_SELECTED REAL KIND(3) return
the kind value for half precision. In —kind=byte mode, the value will be two; in —kind=sequential mode, it will be 16
(this unusual value was chosen to maintain upward compatibility of kind numbers).

The largest finite half-precision value is 65504 .0, the smallest normal half-precision value is 0.00006103515625, and
the smallest subnormal value is 0.000000059604644775390625.

Scalar half-precision operations are evaluated in single precision, and only rounded to half precision when assigned to a
variable or passed as an actual argument to a non-intrinsic or non-mathematical procedure (e.g. SQRT is mathematical,
but NEAREST is not). This can be controlled by the —round_hreal option; if used, all half-precision operations will be
rounded to half precision, both at compile time and run time.

Because of all the conversions needed, half precision is slower than single precision; its sole benefit is halving the
memory and file storage requirements.

14 Random Number Algorithm

The random number generator supplied as the intrinsic subroutine RANDOM_NUMBER is the “Mersenne Twister”.

Note that this generator has a large state (630 32-bit integers) and an extremely long period (approx 109990 and
therefore it is strongly recommended that the RANDOM_SEED routine only be used with a PUT argument that is the
value returned by a previous call with GET; i.e., only to repeat a previous sequence. This is because if a user-specified
seed has low entropy (likely since there are 630 values to be supplied), it is highly likely to set the generator to an
apparently-low-entropy part of the sequence.

If you do want to provide your own seed (and thus entropy), you should store your values in the initial elements of the
seed array and set all the remaining elements to zero — trailing zero elements will be ignored and not used to initialise
the generator. Note that the seed is a random bitstream, and is therefore expected to have approximately half of its
bits nonzero (thus providing many small integer values will likely result in a low-entropy part of the Mersenne Twister
sequence being reached).

15 Automatic Garbage Collection

The —gc option enables use of the runtime garbage collector. It is necessary to use this option during the link phase
for it to have effect; specifying it additionally during the compilation phase can result in improved performance.

The supplied Technical Information note (TECHINFO) lists whether garbage collection is available for your system.
If it is available, there will be a file ‘gc.0o’ in the compiler’s library directory.

The collector used is based on version 5.3 of the publicly available general purpose garbage collecting storage allocator
of Hans-J Boehm, Alan J Demers and Xerox Corporation, described in “Garbage Collection in an Uncooperative
Environment” (H Boehm and M Weiser, Software Practice and Experience, September 1988, pp 807-820).

The copyright notice attached to their latest version is as follows:
Copyright 1988, 1989 Hans-J. Boehm, Alan J. Demers
Copyright (c) 1991-1995 by Xerox Corporation. All rights reserved.

Copyright 1996-1999 by Silicon Graphics. All rights reserved.
Copyright 1999 by Hewlett-Packard Company. All rights reserved.

THIS MATERIAL IS PROVIDED AS IS, WITH ABSOLUTELY NO WARRANTY EXPRESSED
OR IMPLIED. ANY USE IS AT YOUR OWN RISK.

Page 16

Using the Compiler

Permission is hereby granted to use or copy this program

for any purpose, provided the above notices are retained on all copies.
Permission to modify the code and to distribute modified code is granted,
provided the above notices are retained, and a notice that the code was
modified is included with the above copyright notice.

Note that the “NO WARRANTY” disclaimer refers to the original copyright holders Boehm, Demers, Xerox Corpo-
ration, Silicon Graphics and Hewlett-Packard Company. The modified collector distributed in binary form with the
NAG Fortran Compiler is subject to the same warranty and conditions as the rest of the NAG Fortran compilation
system.

The module F90_GC is provided; it contains functions and variables that can control the behaviour of the garbage
collector.

16 Memory Tracing

Tracing of memory allocation and deallocation is provided by the —mtrace option. Control is provided over whether
the address, size, and line number of each allocation is displayed, or the tracing output can be suppressed entirely. A
“paranoia” mode is provided where the memory allocator protects its data structures against inadvertent modification
by the user program.

Runtime environment variables may be used to override the tracing options a program was built with, and to specify
where to write the tracing output. These are only operative if the program was built with some tracing option;
—mtrace=off will build a program with the tracing-capable memory allocator.

If —mitrace=off is not specified, use of any —mtrace option will implicitly do a —mtrace=on.

Basic tracing produces a message to the memory tracing file (normally standard error) for each allocation and deal-
location, including those for automatic variables, i/o buffers and compiler-generated temporaries. Each allocation is
numbered sequentially; the first three items are the i/o buffers for units 0, 5 and 6 (standard error, standard input
and standard output).

All —mtrace= suboptions may be overridden at run time by the NAGFORTRAN_MTRACE_OPTIONS environment variable,
which should be set to the required trace_opt_list (e.g. ‘on,size’). The memory tracing file may be specified at run
time by the NAGFORTRAN_MTRACE_FILE environment variable.

The NAGFORTRAN_MTRACE_OPTIONS variable can also contain an option to limit the total amount of memory that may
be allocated. The ‘1imit=N’ option limits the maximum memory allocated to N MiB (mebibytes), but only if the
program was built with a tracing option (minimally, —mtrace=off). Exceeding the memory limit will result in a
normal “out of memory” condition, which if it occurs in an ALLOCATE statement, can be captured by a STAT= clause.
Note that the memory limit applies to the overall memory usage including automatic variables and compiler-generated
array temporaries.

The —mtrace option must be specified when linking, and is incompatible with —gc. Additionally, line number infor-
mation is only available for those files compiled with —mtrace=line.

The nagfmcheck program can be used to check the output from the —mtrace option. It is designed to be used as a filter.
Any lines that do not look like memory tracing output are ignored. It reports to standard output any errors it detects
such as deallocating something twice, deallocating something that was never allocated, or deallocating something with
a size different from that with which it was allocated. It also reports any apparent memory leaks, though this is less
useful if the program terminated prematurely.

17 Undefined Variable Detection

Use of undefined variables can be detected with the —C=undefined option. Program units compiled with this option
use a different ABI, which means that they are incompatible with program units compiled without this option, and
not interoperable with C; thus the whole program must be Fortran code and compiled the same way. For this reason,
—C=undefined is not part of —C or —C=all.

Page 17

Using the Compiler

Currently, there are a number of other limitations on the use of —C'=undefined.

1. It is incompatible with pointers in an initialised COMMON.

2. All intrinsic modules are available, but the IS0_C_BINDING module can only be used with all-Fortran programs
as the option makes changes to the ABI.

3. Internal READ from a CHARACTER array requires the entire specified array subobject to be “defined”, even those
elements corresponding to records not actually read.

4. Internal WRITE to a CHARACTER array is considered to define the entire specified array subobject, even those
elements corresponding to records not actually written.

5. Certain intrinsic functions require the entirety of their arguments to be defined, even if some portions are not
actually required for the value of the function. For example, the PAD argument to RESHAPE when no padding is
actually required, and elements of the ARRAY argument to PACK that correspond to false elements of the MASK.

6. It is incompatible with the use of OpenMP directives and coarrays.
7. Tt cannot be used on types with length type parameters.
8. It cannot be used when CLASS (*) variables are allocated using the MOLD= specifier.

9. It cannot be used with ALLOCATE when the SOURCE= expression is a CLASS (*) dummy and the actual argument
is a constant.

18 Data Types

The table below lists the intrinsic data types provided by the NAG Fortran Compiler together with their kind numbers.
There are three possible schemes for the intrinsic kind type parameters: the default mode of operation (which may
be specified explicitly by the —kind=sequential option), the “byte” numbering scheme (specified by the —kind=>byte

option) and the “unique” numbering scheme (specified by the —kind=unique).

Type KIND Number | KIND Number | KIND Number Name Description

Name (sequential) (byte) (unique)

REAL 1 4 301 REAL32* Single precision floating-point
REAL 2 8 302 REAL64* Double precision floating-point
REAL 3 16 303 REAL128* | Quad precision floating-point
REAL 16 2 304 REAL16* Half precision floating-point
COMPLEX 1 4 301 REAL32* Single precision complex
COMPLEX 2 8 302 REAL64* Double precision complex
COMPLEX 3 16 303 REAL128* | Quadruple precision complex
COMPLEX 16 2 304 REAL16* Half precision complex
LOGICAL 1 1 201 BYTE Single byte logical

LOGICAL 2 2 202 TWOBYTE | Double byte logical

LOGICAL 3 4 203 WORD Default logical

LOGICAL 4 8 204 LOGICAL64 | Eight byte logical

INTEGER 1 1 101 INT8* 8-bit integer

INTEGER 2 2 102 INT16* 16-bit integer

INTEGER 3 4 103 INT32* 32-bit (default) integer
INTEGER 4 8 104 INT64* 64-bit integer

CHARACTER 1 1 646 ASCII ASCIT or ISO 8859-1 character
CHARACTER 2 2 213 JIs JIS X 0213 character
CHARACTER 3 3 5323 Ucs2 Unicode (UCS-2) character
CHARACTER 4 4 10646 Ucs4 ISO 10646 (UCS-4) character

Page 18

Using the Compiler

The Name column of the table indicates the name provided by the intrinsic module FOO_KIND; the ones marked * are
also provided by the standard intrinsic module ISO_FORTRAN_ENV. Using these names avoids the portability problems
that arise if the kind numbers are hard-coded.

Note that on all machines except Sun Solaris with the SunPro C compiler, quadruple precision is actually “double
double” precision; this provides nearly twice the precision of Double precision but with a reduced exponent range.

19 Modules

To use a module it must be an intrinsic module, previously compiled, or defined in the file prior to its use. When
separately compiling a module the —¢ option should be specified.

Compiling a module creates a ‘.mod’ file and a ‘.0’ file. The ‘.mod’ file is used by the compiler at compile time to
provide information about module contents, the ‘.0’ file (if generated) contains the code of any module procedures and
must be specified when creating an executable file.

Note that the name of the ‘.mod’ file will be the name of the module, the ‘.0’ file will be named after the original
source file.

When a previously compiled module is USEd the NAG Fortran Compiler attempts to find its source file and, if that
is successful, checks the modification times producing a warning message if the ‘.mod’ file is out of date.

20 Runtime Environment Variables

The following variables control the runtime environment for programs compiled with the NAG Fortran Compiler.

NAGFORTRAN _MTRACE FILE
Programs compiled using any —mitrace= option will write the memory trace to this file. The default is
standard error.

NAGFORTRAN_MTRACE_OPTIONS
Changes the memory tracing options for programs compiled using any —mtrace= option.

NAGFORTRAN_NUM_IMAGES
Sets the number of images with which to execute a program in Co-SMP mode (it has no effect if the main
program was compiled with —coarray=single). If the value of the variable is not an integer value, or is less
than one or greater than 1000, it is ignored. In the absence of this variable, the number of images for a
Co-SMP mode program is taken from the —num_images= option, or from the number of hardware threads.

NAGFORTRAN RUNTIME_ERROR_FILE
Runtime error messages will be written to this file. The default is standard error.

NAGFORTRAN_RUNTIME_LANGUAGE
Controls the language used for runtime error messages. This may be ‘English’ or ‘Japanese’ (not case-
sensitive); the default is English.

NAGFORTRAN_RUNTIME_OPTIONS
Controls runtime optional behaviour excluding memory tracing. This is a comma-separated list of options
from the following list.

Option Effect

autoskip_namelist Enables auto-skipping namelist input.
blank_common _size=N Sets the default size of blank COMMON blocks when
executing in Co-SMP mode.
log_autoskip_namelist Enables auto-skipping namelist input, with logging.

show_dangling Enables tracing of dangling pointers; this only

affects code compiled with —C=dangling.
suppress_underflow_warning | Do not produce the usual warning on program termination
when the floating-point underflow flag is set.
underflow_warning Do produce the usual warning on program termination
when the floating-point underflow flag is set.

Page 19

Using the Compiler

The autoskip_namelist option enables autoskipping namelist input. In this mode, when the name after
the ampersand in the input record does not match the namelist group name in the READ statement, instead
of raising an i/o error condition it skips records until it finds one that begins with an ampersand and the
correct name.

The blank_common_size=N option sets the default size of blank COMMON blocks to N bytes when executing
in Co-SMP mode with multiple images; it has no effect otherwise. If not specified, the default size is one
mebibyte (1048576 bytes). This option is only needed if blank COMMON blocks in different program units
have different sizes, and the largest one is not encountered first.

The log_autoskip_namelist option enables autoskipping namelist input (as above), with logging. In this
mode, when an autoskip occurs, the location of the READ statement and the action being taken are logged
to standard error, for example:

[example.f90, line 5: Looking for namelist group NAME, skipping WRONG]

The show_dangling option causes messages to be produced on the runtime error file when a dangling
pointer is created, reassociated with something else, nullified, or ceases to exist. For example,

[a.f90, line 20: Dangling pointer P detected (number 1), associated at b.f90, line 18]
[c.£90, line 7: Dangling pointer P (number 1) has been reassociated]

[c.f90, line 9: Dangling pointer Q (number 2) has been nullified]

[file.f90, line 21: Dangling pointer R (number 3) no longer exists]

The dangling pointer number is incremented every time a dangling pointer is detected. If an array with
dangling pointer components ceases to exist, a message will be produced for each dangling pointer compo-
nent of each element; however, the element subscripts will not be shown, instead ‘(. ..) " will be produced
to indicate that it is an array element, e.g.

[file.f90, line 44: Dangling pointer X(...)%A (number 8) no longer exists]

The suppress_underflow_warning runtime option has the same effect as the —no_underflow_warning
compilation option; that is, it suppresses the usual warning message on program termination when the
floating-point underflow flag is set.

The underflow_warning runtime option requests that if the floating-point underflow flag is set on program
termination, a warning message should be produced. This is the default behaviour, but the runtime option
will override the —no_underflow_warning compilation option.

TMPDIR Controls the directory used for scratch files (the default is system-dependent).

21 Debugging

On Windows debugging is built-in to the Fortran Builder. For operating systems other than Windows a Modern
Fortran-aware debugger might be available as dbx90; see TECHINFO.txt for details.

In general, host system debuggers, such as dbx or gdb, may be used successfully on Fortran code as the names of
the original source files, plus line numbers, are passed through to the intermediate C files. In using such debuggers it
should be noted that most local variables have an underscore appended to their names. It may be useful to look at
the intermediate C code when debugging; this is produced by the —S option.

22 Producing a Call Graph

The call graph generator takes a set of Fortran source files and produces a call graph with optional index and called-by
tables. C files and fpp-processed files are not handled.

The call graph generator understands the following compiler options with the same meaning: —132, —dcfuns, —double,
—dryrun, —dusty, —encoding, —english, —f2003, —f2008, —f95, —fized, —free, —help, —I, —i8, —indirect, —info, —kind,

Page 20

Using the Compiler

—max_parameter_size, —maxcontin, —mismatch, —mismatch_all, —nihongo, —nocheck_modtime, —nomod, —noqueue,
—o, —openmp, —Qpath, —r8, —strict95, —thread_safe, —u, —u=sharing, —v, —V, —w and —zlicinfo.

“

The “Qfilename” syntax may also be used, with the same effect as the “—indirect filename” option.

The call graph is written to the file specified by the —o option, or to standard output if no —o option is specified.

The following additional options control the output produced.

—calledby
Produce a “called-by” table showing, for each routine, the routines that call it directly or indirectly. This
is produced at the end of the output.

—indent=N
Indent by N for each level in the graph, up to the maximum. The default is —indent=4.

—indent_max=N
The maximum indentation is N. The default is —indent_maz="70.

—index Produce an alphabetic index listing, for each routine, the line of the call graph where the routine first
appears. This follows the call graph itself and precedes the called-by table (when the —calledby option is
used).

—show_entry
Show ENTRY point names in the call graph; without this option, calls to an ENTRY point are shown as calls
to the containing subprogram.

—show_generic
If a call is via a generic identifier, show the generic identifier in the call graph.

—show_host
Show the host scope names for calls to internal and module procedures.

—show_pclass
Show the class of each procedure (e.g. ‘module’, ‘internal’; ...).

—show_rename
If a called procedure was renamed on a USE statement, show the renaming.

23 Dependency Analysis

The dependency analyser takes a set of Fortran source files and produces dependency information in the form specified.
C files and fpp-processed files are not handled.

The dependency analyser understands the following compiler options with the same meaning: —132, —dryrun,
—english, —fized, —free, —help, —I, —indirect, —mazcontin, —nihongo, —o, —Qpath, —tempdir, —v and —V. The
“Qfilename” syntax may also be used with the same effect as the “—indirect filename” option.

The following additional options control the operation of the dependency analyser:

—otype=type
This option controls the output form, type must be one of:
blist (the filenames as an ordered build list),
dfile (the dependencies in Makefile format, written to separate file.d files),
info (the dependencies as English descriptions) or
make (the dependencies in Makefile format).

The default is —otype=info. If —otype=dfile is specified, no —o option is permitted; otherwise, the result is

written to the file specified by the —o option or to standard output if no —o option is specified.
—paths=pathtype

Specifes the form to use for dependency paths; pathtype must be either absolute or relative. With

—paths=absolute, paths for INCLUDE files that are relative specifications will be prefixed by the current
working directory.

Page 21

Using the Compiler

24 Generating Interfaces

The interface generator takes a set of Fortran source files and produces interfaces for the procedures therein. The
output is either a module (in a new source file), or an INCLUDE file.

The interfaces are written either to the file specified by the —o option, or if module output is being produced to
the file with the same name as the module and extension ‘.f90’, or otherwise (an INCLUDE file is being produced) to
‘interfaces.inc’. In each case the interfaces are all within a single INTERFACE block.

The interface generator understands the following compiler options with the same meaning: —132, —dcfuns, —double,
—dryrun, —dusty, —encoding, —english, —f2003, —f2008, —f95, —fixed, —free, —help, —I, —i8, —indirect, —info,
—kind, —max_parameter_size, —mazxcontin, —mismatch, —mismatch_all, —mihongo, —nocheck_modtime, —noqueue, —o,
—openmp, —Qpath, —r8, —strict95, —tempdir, —thread_safe, —u, —u=sharing, —v, —V, —w and —zlicinfo.

The interface generator understands all the enhanced polish options with the same meaning.

The following additional options control the operation of the interface generator:

—cmt_generation
Add a comment before the INTERFACE statement, giving the date and time that the file was generated.
This is the default.

—cmt_provenance
Add a comment after each procedure heading (SUBROUTINE or FUNCTION statement) indicating the source
of the procedure.

—module=X
Specifies the name of the module to generate containing procedure interfaces. The default is ‘interfaces’.

—otype=type
Specify the type of output file required to type, which must be one of

include (INCLUDE file),
module (Fortran module in a new source file).

The default is —otype=module.

—nocmt_generation
Do not add any comment before the INTERFACE statement.

—nocmt_provenance
Do not add any comment after each procedure heading. This is the default.

25 Source File Polishing

The polisher takes a set of Fortran source files, which may be in fixed or free form, and produces a free form “polished”
version of each file. C files and fpp-processed files are not handled.

The polisher understands the following compiler options with the same meaning: —132, —encoding, —english, —f2003,
—f2008, —f95, —fired, —free, —help, —I, —indirect, —info, —mazcontin, —nihongo, —noqueue, —o, —Qpath, —tempdir,
—v, =V, —w and —zlicinfo.

The polished output is written to the file specified by the —o option, or to the same filename with the extension
replaced by ‘.f90_pol’ if no —o option is specified. The output file cannot have the same name as the input file.

The following additional options control the operation of the polisher:

—align_right_continuation
Align the continuation markers (ampersands) at the end of a continued line to column N+2, where N is
the normal line width (specified by the —width= option). This only affects lines that do not end with an
inline comment.

—alter_comments
Enable options to alter comments; without this option, any options that would otherwise alter the comments
are ignored.

Page 22

Using the Compiler

—array_constructor_brackets=X
Specify the form to use for array constructor delimiters; X must be one of Asis (same as the input file),
ParenSlash (use parentheses+slash pairs, i.e. ‘(/ ... /)’) or Square (use square brackets, i.e. ‘[... 17).
The default is —array_constructor_brackets=Asis.

—blank_cmt_to_blank line
Turn comment lines that have no text (other than the comment-initiating character) into plain blank lines;
this is the default if the —alter_comments option is set.

—blank_line_after_decls
Ensure that there is a blank line after the declarations and before the first executable statement; this is the
default.

—bom=X
Specify whether to write a Unicode Byte-Order Mark at the beginning of the output file; X must be one
of Asis (same as the input file), Insert (insert a byte-order mark) or Remove (remove any byte-order
mark). This option only has effect if the input file is known to be in UTF-8 encoding, either because it
begins with a byte-order mark or the —encoding=UTF§8 option was used. The default is —bom=Asis.

—break_long_comment_word
If a comment line will be split into two lines, the comment may be broken in the middle of a long word.

—character_decl=style
Specify the style to be used for CHARACTER type declaration statements; style must be one of the following
(not case-sensitive):
Asis (same as the input statement, but obey any —kind_keyword= option),
Keywords (use LEN= and KIND=),
Kind _Keyword_Only (use KIND= but not LEN=) or
No_Keywords (use modern style with no keywords).

The default is Asis; with any other style, the obsolescent “CHARACTER*length” form will be changed to the
modern “CHARACTER (length)” form. When both the length and kind appear in the input statement, the
length will appear first in the output statement.

—commas_in_formats=X
Specify whether to add optional commas in FORMAT statements; X must be one of Asis (use the same
comma scheme as the input), Insert or Remove. The default is —commas_in_formats=Insert.

—dcolon_column=N
Align double colon ‘::’ in declarations at column N and align any subsequent continuation lines to match.
The default is for no special alignment, which is equivalent to —dcolon_column=0.

)

—dcolon_in_decls=X
Specifies how to handle the optional double colon
the input status), Insert (insert ‘::’ if not present), or Remove (remove
the default is —dcolon_in_decls=Asis.

CoW?

in declarations; X must be one of Asis (preserve
“::7 if present and optional);

—delete_all_ comments
Delete all comments (if the —alter_comments option is set).

—delete_blank lines
Delete blank lines and comment lines that have no text (other than the comment-initiating character), if
the —alter_comments option is set.

—delete_unused _labels
Delete labels that are never referenced; this is the default.

—format_start=N
If renumbering FORMAT statements in a separate sequence, the first FORMAT statement will be N; the default
is —format_start=90000.

—format_step=N
If renumbering FORMAT statements in a separate sequence, the step from one label to the next will be N;
the default is —format_step=10. Note that this may be negative (but not zero).

—idcase=X
Set the case to use for identifiers; X must be one of C (for Capitalised), L (for lowercase) or U (for
UPPERCASE); the default is —idcase=L.

Page 23

Using the Compiler

—indent=N
Indent statements within a construct by N spaces from the current indentation level; the default is
—indent=2.

—indent_comment_marker
When indenting comments, the comment-initiating character should be indented to the indentation level;
this is the default.

—indent_comments
Indent comments; this is the default if the —alter_comments option is set. The result is also affected by the
—indent_comment_marker option.

—indent_continuation=N
Indent continuation lines by an additional N spaces; the default is —indent_continuation=2.

—indent_max=N
Set the maximum indentation level to N spaces; the default is —indent_maz=60. The value must be at
least 10 less than the output line length (—width=).

—inline_comment_indent=N
Set the indentation level for inline comments to column N; the default is —inline_comment_index=35.

—keep_blank_lines
Do not delete blank lines or comment lines with no text; this is the opposite of —delete_blank_lines and is
the default.

—keep_comments
Do not delete non-blank comment lines; this is the opposite of —delete_comments and is the default.

—keep_unused_labels
Do not delete unused (unreferenced) labels; this is the opposite of —delete_unused_labels.

—kind _keyword=X
Specifies how to handle the KIND= specifier in declarations; X must be one of Asis (take no action but
preserve the input status), Insert (insert KIND= if not present), or Remove (remove KIND= if present); the
default is —kind_keyword=Asis.

—kwcase=X
Set the case to use for language keywords; X must be one of C (for Capitalised), L (for lowercase) or U
(for UPPERCASE); the default is —kwcase=C.

—label_after_indent
Indent labels; this is the opposite to —label_before_indent.

—label_before_indent
Output the statement label, if any, before indenting the statement; this is the default.

—leave_formats_in_place
Leave FORMAT statements in the same position as they are in the input file; this is the opposite of
—move_formats_to_end, and is the default.

—margin=N
Set the left margin (initial indent) to N. The value must be at least 10 less than the output line length
(—width=). The default value for the left margin is 4.

—move_formats_to_end
Move FORMAT statements to the end of the subprogram or program unit, immediately before the CONTAINS
or END statement.

—name_scopes=X
Specify whether to add optional keywords and scope names to the END or END TYPE statement for a scope;
X must be one of Asis (leave as is), Insert (insert keywords and/or names), Keywords (insert keywords
but remove names) or Remove (remove optional keywords and names). This option also applies to the
END INTERFACE statement. The default is —name_scopes=Keywords.

—noalign_right_continuation
Do not align the continuation markers (ampersands) at the end of continued lines; this is the default.

—noalter_comments
Do not alter comments in any way; this is the default.

Page 24

Using the Compiler

—noblank_cmt_to_blank_line
Do not turn blank comments to blank lines.

—noblank_line_after_decls
Do not insert a blank line between the last declaration and the first executable statement.

—nobreak_long_comment_word
If a comment line will be split into two lines, do not break the comment in the middle of a long word; this
is the default.

—nodcolon_column
Do not align double colon ‘: :’ in declarations. This is the default, and is equivalent to specifying alignment
at column zero via —dcolon_column=0.

)

—noindent_comment_marker
Place the comment-initiating character for a comment line in column 1.

—noindent_comments
Do not indent the text of a comment line.

—norenumber
Do not renumber statement labels.

—noseparate_format_numbering
When renumbering statement labels, use a single sequence for both FORMAT and non-FORMAT statements;
this is the default.

—noterminate_do_with_enddo
Do not change DO loop terminating statements.

—nowrap_comments
Do not wrap long comment lines (they will still be indented if comments are being indented).

—relational=X
Specifies the form to use for relational operators, X must be either F77- (use .EQ., .LE., etc.) or F90+
(use ==, <=, etc.); the default is —relational=F90+.

—renumber
Renumber statement labels; this is the default.

—renumber_start=N
When renumbering statement labels, the first label will be N; the default is —renumber_start=100.

—renumber_step=N
When renumbering statement labels, the step from one label to the next will be N; the default value is
—renumber_step=10.

—separate_format_numbering
When renumbering statement labels, renumber FORMAT statements in a separate sequence from non-FORMAT
statements.

—terminate_do_with_enddo
Change the terminating statements of all DO loops so that each loop ends with an ENDDO statement; this is
the default.

—width=N
Set the maximum length of the text on each output line to N; the default is —width="78. Note that in the
case of continuation lines, an additional two characters (¢ &) will be produced after the last text on a line
and this may take the line length over the limit. The width must be at least 10 more than the left margin
(—margin=) and the maximum indent (—indent-maz=). The maximum width setting is 1024, however
values higher than 130 will produce output that does not conform to the Fortran standard.

—wrap_comments
Wrap long comment lines that would otherwise exceed the maximum line length. This is the default.

Page 25

Using the Compiler

26 Enhanced Source File Polishing

The enhanced polisher takes a set of Fortran source files, which may be in fixed or free form, and produces a free form
“polished” version of each file. C files and fpp-processed files are not handled. Unlike the simple polisher, the Fortran
source files must be compilable without error; this is because the information needed for enhanced polishing requires
successful semantic analysis of the files.

The enhanced polisher understands the following compiler options with the same meaning: —132, —abi, —dcfuns,
—double, —dryrun, —dusty, —encoding, —english, —f2003, —f2008, —f95, —fixed, —free, —help, —I, —i8, —indirect,
—info, —kind, —maz_parameter_size, —maxcontin, —mismatch, —mismatch_all, —mihongo, —mocheck_modtime, —momod,
—noqueue, —o, —openmp, —Qpath, —r8, —strict95, —tempdir, —thread_safe, —u, —u=sharing, —v, —V, —w and
—zlicinfo.

The enhanced polisher includes all the simple polish options, which are not repeated here.

Note that unlike nagfor =polish, —name_scopes=Asis acts as if it were —name_scopes=Keywords, which is the
default. Similarly, —array_constructor_brackets=Asis acts as if it were —array_constructor_brackets=ParenSlash, and
is the default, and —dcolon_in_decls=Asis acts as if it were —dcolon_in_decls=Insert, and is the default.

The default filename extension for the output file is <.f90_epo’, used when no —o option is specified.

The following additional options control the operation of this tool.

—add_arg_keywords
Add keywords to actual arguments in references to user-defined procedures with an explicit interface and
at least two dummy arguments, and in references to intrinsic procedures and intrinsic module procedures
with at least three dummy arguments (except for MAX and MIN, where it is at least three actual arguments).

Keywords are not added to arguments that precede a label argument. The order of the arguments is
unchanged.
This option is equivalent to —add_arg_keywords=all2,intrinsic3.
—add_arg_keywords=proc_class_list
Add keywords to actual arguments in procedure references, when the procedure has an explicit interface,

for the classes of procedure listed in proc_class_list, which is a comma-separated list that may contain the
following suboptions:

all (all classes of procedure),

bound object-bound and type-bound procedures),
dummy dummy procedures),

external (external procedures),

intrinsic (intrinsic procedures and intrinsic module procedures),
module non-intrinsic module procedures),

(
(
(
internal (internal procedures),
(
(
user (procedures other than intrinsic procedures and intrinsic module procedures).

Keywords are not added to arguments that precede a label argument. The order of the arguments is un-
changed. Procedure pointer components are also known as “object-bound procedures”, and thus included in
—add_arg_keywords=bound; named procedure pointers are treated as external procedures and thus included
in —add_arg_keywords=external.

A suboption name may be followed by a single nonzero digit (e.g. “intrinsic3”); this specifies that for
procedures covered by that suboption, keywords are only to be added if the procedure has at least that many
dummy arguments. For type-bound and object-bound procedures, the passed-object dummy argument does
not count towards the limit (as it never appears in the argument list). The intrinsic MAX and MIN functions
use the number of actual arguments instead.

A suboption name followed by a digit may be further followed by the letter ‘a’ (e.g. “intrinsic3a”; this
specifies that the argument limit applies to the number of actual arguments in a reference to the procedure,
not the number of dummy arguments (the number of actual arguments will be less than the number of
dummy arguments when an optional argument is omitted).

Note that suboptions are parsed from left to right, and later suboptions override earlier ones.

—intrinsic_case=analogy
Specifies whether the case of an intrinsic procedure name should be the same as other names (as_names),
or the same as language keywords (as_keywords). The default is —intrinsic_case=as_names.

Page 26

Using the Compiler

—remove_intrinsic_stmts
Specifies that intrinsic procedure names that were not passed as actual arguments should be removed from
INTRINSIC statements, and that if all the names in an INTRINSIC statement are removed in this way, the
INTRINSIC statement itself should be removed. Any comments associated with the INTRINSIC statement
will remain.

27 Unifying Precision

The precision unifier standardises floating-point and complex variable declarations, floating-point and complex literal
constants, and some specific (non-generic) intrinsic procedures in a set of Fortran source files in order to unify the
precision of these entities.

Standardisation to quadruple precision is only available on machines for which quadruple-precision floating-point
arithmetic is available.

The tool attempts to make a standardising precision parameter accessible in program units (and interface blocks) via a
use statement. You can control the form of this statement: the —pp_name= option controls the name of the precision
parameter, and the —pp_module= option supplies the name of its host module (which is known as the ‘precision
module’). The default form for the use statement (when no options are specified) is USE WORKING_PRECISION, ONLY:
WP.

The —precision= option (whose default value is Double) can be supplied to set the desired unifying precision. The
tool will use this setting when performing a number of checks of the validity of the standardisation process on the
input files.

The precision module can be created by the tool, but otherwise does not itself undergo precision unification. A warning
is issued if the tool encounters this module. A message is also emitted if no definition for the precision parameter is
found in the module, or otherwise if the defined precision parameter specifies a different kind to the desired precision
as provided or implied by the —precision= option.

The tool searches each program unit and interface block in the input source and determines whether the precision
parameter is already accessible. If it is not, then a use statement, in the form given above, is inserted in the last
allowable position for its statement type. For an internal or module procedure this statement is placed in the host.
If the precision parameter is already declared in the form INTEGER, PARAMETER :: wp = constant_expression,
then this declaration is deleted and a new use statement added, as previously described. (This PARAMETER form of
statement is only recognised as declaring the precision parameter if it precedes all declarations of floating-point or
complex entities in the scoping unit.) Any other form of definition or import of the precision parameter will not be
modified, and the tool issues a warning that the standardised use statement could not be inserted.

Type declarations for floating-point and complex entities are standardised to include the precision parameter as kind
parameter. Entities that are implicitly typed to be floating-point or complex are explicitly declared, in the same
form. In the case when a function is defined with a floating-point or complex type specification on the function
statement, this specification is deleted and a distinct type declaration statement for the function result is inserted into
the function’s declaration section.

Floating-point and complex literal constants are standardised to use the precision parameter as their kind.

The option —pu_floats= controls the extent of precision conversions that are applied. The default behaviour described
above for floating-point and complex entities corresponds to —pu_floats=On. The value —pu_floats=Default_Kinds
may be supplied in order to limit the precision unification only to entities having default kind; i.e., kind specifiers
already given in type declarations or for literals will be preserved, even if they differ from the desired unifying precision.
Modification of all floating-point and complex entities may be suppressed altogether via —pu_floats=Off .

The following specific procedure references are standardised to the generic replacement listed below:

Page 27

Using the Compiler

Specific Generic Specific | Generic Specific Generic
ALOG10 L0OG10 DATAN ATAN DSINH SINH
ALOG LOG DBLE REAL DSIN SIN
AMAXO(...) | REAL(MAX(...)) DCMPLX CMPLX DSQRT SQRT
AMAX1 MAX DCONJG CONJG DTANH TANH
AMINO(...) | REAL(MIN(...)) DCOS C0s DTAN TAN
AMIN1 MIN DCOSH COSH FLOAT REAL
AMOD MOD DDIM DIM IABS ABS
CABS ABS DEXP EXP IDIM DIM
CCOs cos DIMAG ATMAG IDINT INT
CDABS ABS DINT AINT IDNINT NINT
CEXP EXP DLOG10 L0OG10 IFIX INT
CLOG LOG DLOG LOG ISIGN SIGN
CSIN SIN DMAX1 MAX MAXO MAX
CSQRT SQRT DMIN1 MIN MAX1(...) | INT(MAX(...))
DABS ABS DMOD MOD MINO MIN
DACOS ACOS DNINT ANINT MIN1(...) | INT(MINC...))
DASIN ASIN DREAL REAL SNGL REAL
DATAN2 ATAN2 DSIGN SIGN

(See also the description of —dcfuns.)

Furthermore, DBLE is converted to REAL. Following that, the KIND= argument is added to calls to REAL and CMPLX,
when appropriate.

In cases where unifying the precision of the input source may lead in the generated output to undesirable side effects,
or even invalid Fortran, the tool will attempt to issue a warning alerting you to the possibility. Here is a non-exhaustive
list of situations where it may be inappropriate to apply this tool.

1. Your source intentionally uses a mix of floating-point and complex precisions and you are running the tool in
(the default) mode —pu_floats=0On.

2. You are employing Fortran language features for generic programming (such as generic interface blocks or
parameterised derived types).

3. You have floating-point or complex data in EQUIVALENCE statements or in references to the TRANSFER intrinsic.
4. You have explicitly-typed intrinsic functions, or are passing intrinsic functions as procedure arguments.

5. You are using the DPROD intrinsic (perhaps as a means of performing higher- (double-) precision computations
in a single-precision program unit).

6. You are mixing Fortran and non-Fortran code.

For procedures spread across several files clearly it is desirable to make sure this tool is applied to all files consistently.
This will ensure, for example, that procedure references and the corresponding procedure definitions do not become
inconsistent with respect to the type standardisation.

The precision unifier understands the following compiler options with the same meaning: —132, —abi, —dcfuns,
—double, —dryrun, —dusty, —encoding, —english, —f2003, —f2008, —f95, —fixed, —free, —help, —I, —i8, —indirect,
—info, —kind, —maz_parameter_size, —maxcontin, —mismatch, —mismatch_all, —mihongo, —mocheck_modtime, —momod,
—noqueue, —o, —openmp, —Qpath, —r8, —strict95, —tempdir, —thread_safe, —u, —u=sharing, —v, —V, —w and
—zlicinfo.

Note that using the —double or —r8 option affects the meaning of the —precision= option; see the description of the
latter, below.

The standardised output is written to the file specified by the —o option, or to the same filename with the extension
replaced by ‘.f90_prs’ if no —o option is specified. The output file cannot have the same name as the input file.

The precision unifier understands all the enhanced polish options with the same meaning.

The following additional options control the operation of this tool:

Page 28

Using the Compiler

—nocmt_generation
If creating the precision module, do not add a comment saying when it was generated.

—pp-create_module
Automatically create the precision module, in the file whose name is the name of the module, converted
to lower case, with file type ‘.f90’; thus the default filename is working precision.f£90. If the file already
exists it will not be overwritten by this option.

The created module will contain only the definition of the precision parameter, and unless the —nocmt_generation
option is given, a comment identifying when the module was created.

—pp-name=X
Specifies the name of the precision parameter to use in the standardised output, which must be a legal
identifier that does not conflict with existing names in the input source. The default is ‘WP’.

—pp-module=X
Specifies the name of the precision module from which the precision parameter is to be imported. This
module name must be a legal identifier that does not conflict with existing names in the input source. The
default is ‘WORKING_PRECISION’.

—pp_nocreate_module
Do not create the precision module. This is the default.

—precision=X
Specifies the desired target unifying precision in the output; X must be one of Half, Single (i.e., same
precision as default REAL), Double (i.e., same precision as default DOUBLE PRECISION) or Quadruple.
The default is —precision=Double.

Note that, since —double and —r8 double the size of default REAL (and possibly default DOUBLE PRECISION),
specifying —double or —r8 will likewise modify the meaning of this —precision= option too.

—pu_floats=X
Controls the precision-unification mode for floating-point and complex entities; X must be one of Off, On
or Default_Kinds. In the latter mode of operation already-kinded entities will not be modified. The
default is —pu_floats=0On.

Page 29

Debugging with dbx90

28 dbx90 command line

dbx90 [option]... executable-file

29 Description of dbx90

dbx90 is a Fortran-oriented debugger for use with the NAG Fortran Compiler on Unix-like systems (e.g. Linux,
Solaris). Its syntax is quite similar to that of dbx, which it invokes as a sub-process to carry out the actual machine-
dependent debugging commands. (On gce-based implementations, gdb is used.)

The program to be debugged should be compiled and linked with the —g90 option. This creates a debug information
(.g90) file for each Fortran source file.

If the environment variable DBX90_DBXPATH is defined, dbx90 will use it to locate the native debugger instead of the
built-in path.

30 dbx90 options

—compatible
This permits dbx90 to debug code compiled by the NAG Fortran Compiler using the —compatible option.

—I pathname
Add pathname to the list of directories which are to be searched for module information (.mod) files and
debug information (.g90) files. The current working directory is always searched first, then any directories
named in —/ options, then the compiler’s library directory (usually ‘/usr/local/l1ib/NAG_Fortran’ or
‘/opt/NAG_Fortran/1lib’)

—Qpath path
Set the compiler’s library directory to path. This is only used for finding the module information (.mod)
files for intrinsic modules.

31 dbx90 Commands

alias List command aliases.

alias name text
Create a new alias name with the replacement value text. The replacement text is not limited to a single
word but may contain spaces.

assign var = expr
Assign the value of expr to variable var. The variable can be scalar, an array (including an array section),
a scalar component, or an element of an array component, but cannot be of derived type. The value must
be a scalar expression (see “Expressions” for more details).

cont Continue execution from where it was stopped (either by a breakpoint or an interrupt).
delete n Delete breakpoint number n.
delete all Delete all breakpoints.

display List the expressions to be displayed after each breakpoint is reached.

display expr
Add expr to the list of expressions to display after each breakpoint. Ezpr may also be an array section.

dump Display all local variables and their values.

Page 30

Debugging with dbx90

down [n] Move the focus down (i.e. to the procedure called by the current procedure). If n is present, move down
n levels.

help [topic]
Display a brief help message on the specified topic, or on using dbx90 generally.

history List the history command buffer. Old commands can be executed with:

1 repeat last command,
'n repeat command n in the history buffer, and
! -n repeat the n'” last command.

history n Set the size of the history command buffer to n commands. The default size of the history command
buffer is 20.

if expr This is actually a suffix to the breakpoint (‘stop’) commands not an independent command. It prevents
the triggering of the breakpoint until the expression ezpr (a scalar expression) is .TRUE. (or non-zero).

list [linel[,line2]]
Display the next 10 lines of the program, display line linel of the current file or display lines line! to line2
of the current file.

next [n] Execute the next n lines (default 1) of the current (or parent) procedure. Any procedure reference in these
lines will be executed in its entirety unless a breakpoint is contained therein.

print expr [,expr]...
Display the value of expr, which can be a scalar expression, array section, derived type component,or a
variable of any data type. Several expressions may be given separated by commas.

quit Exit from dbx90, immediately terminating any program being debugged.

raw dbx-command
Pass dbz-command directly to “dbx”. This is not recommended for normal use.

rerun [command-line]
Begin a new execution of the program, passing command-line to it (if present) or the command-line from
the previous run or rerun command if not.

run [command-line]
Begin a new execution of the program, passing command-line to it (if present) or blank command line if
not.

scope [name]
Display the current procedure name or set the focus to the specified procedure name.

status List the breakpoints which are currently set.

step [n] Execute the next n lines (default 1) of the program, counting lines in referenced procedures (i.e. step into
procedure references).

stop name
Set a breakpoint which triggers when variable name is accessed. Note that name cannot be ‘at’ or ‘in’.
This command is not available on Solaris or HP-UX.

stop at lineno
Set a breakpoint at line lineno of the file containing the current procedure.

stop in name
Set a breakpoint at the beginning of procedure name. Note that this breakpoint occurs at the beginning
of procedure initialisation, not at the first executable statement. If there is no procedure called ‘MAIN’,
the main program can be specified using that name.

undisplay expr
Remove expr from the “display” list.

up [n] Move the focus up (i.e. to the caller of the current procedure). If n is present, move up n levels.

Page 31

Debugging with dbx90

whatis name
Describe how name would be explicitly declared.

where Display the stack of active procedures with their dummy argument names.

which name
Display the fully qualified form of name which can be used for access from another scope.

32 dbx90 Expressions

32.1 Scalar expressions

Scalar expressions in dbx90 are composed of literal constants, scalar variable references including array elements,
intrinsic operations and parentheses.

Literal constants can be of any intrinsic type, e.g.

INTEGER 42
REAL 1.2

1.3e2
COMPLEX (56.2,6.3)
CHARACTER "string"
LOGICAL .TRUE.

.T.

Subscript expressions must be scalar and of type INTEGER.

All intrinsic operations are supported except for exponentiation and concatenation, that is:
+, -, %, / == /= < <= > >= _AND., .OR., .NOT., .EQV., .NEQV., .EQ., .NE., .LT., .LE., .GT., .GE.

(Operator names are not case-sensitive).

Note: array operations and operations involving variables of complex, character or derived type are not supported.

32.2 Array sections
Assignment, printing and displaying of array sections follows the Fortran syntax, e.g.

ARRAY(:)
ARRAY(1:5)
ARRAY(1:10:2)

If the stride is supplied it must be a positive scalar expression — negative strides are not supported. All subscript
expressions must be scalar — vector subscripts are not supported.

32.3 Derived type component specification

Individual components of a derived type scalar or array may be printed using normal Fortran syntax.

For example,
print varia

will print the “a” component of derived type “var”.
Components of all data types are supported.

Components which are of derived type will be displayed recursively until either:

Page 32

Debugging with dbx90

a. there are no further nested derived types, or

b. a derived type array component is reached.

Array components of intrinsic data types will be truncated to ‘<array>’, and derived type array components will be
truncated to ‘<derived type array>’.

Allocatable components of derived types are supported.

Derived type assignment is not supported; however, scalar non-derived-type components may be assigned values.

33 dbx90 Command aliases

The following set of command aliases are defined:

assign
stop at
stop in
cont
history
list
next
print
quit
rerun
step

o o p
g}

nw Ro" B B O

New aliases may be created using the alias command, e.g.

alias xpl print x+1

34 dbx90 limitations

Breakpoints set at the beginning of a routine occur before procedure initialisation; at this point attempting to print
or display an assumed-shape dummy argument, a variable with a complicated EQUIVALENCE or an automatic variable
will produce dbx crashes, dbx90 crashes or nonsensical output. Execution must be stepped to the first executable
statement (e.g. using the next command or by setting a second breakpoint) before any of these will work satisfactorily.

Strides in array sections must be positive.

35 Example of dbx90

This is an example of the use of dbx90 in debugging some Fortran code which contains both COMMON blocks and
modules.

The file to be debugged is called ‘fh4.£90’ and contains:

MODULE fh4
REAL r
END MODULE fh4

PROGRAM fh4_prog
USE fh4
COMMON/fh4com/i
i=2
CALL sub

Page 33

Debugging with dbx90

PRINT *,i,r
END PROGRAM fh4_prog

SUBROUTINE sub
USE fh4
COMMON/fhé4com/i
r = 0.5%i
i = ix3

END SUBROUTINE sub

It is first compiled with the —g90 option and then run under dbx90:

% nagfor -g90 -o fh4 fh4.f90

% dbx90 fh4

NAG dbx90 Version 5.2(22)

Copyright 1995-2008 The Numerical Algorithms Group Ltd., Oxford, U.K.

GNU gdb Red Hat Linux (6.5-15.fc6rh)

Copyright (C) 2006 Free Software Foundation, Inc.

GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditiomns.
Type "show copying" to see the conditions.

There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "i386-redhat-linux-gnu"...Using host libthread_db 1lib
rary "/lib/libthread_db.so.1".

(dbx90)
Setting a breakpoint in routine SUB and running the program.
(dbx90) stop in sub
[1] stop in SUB in file "fh4.f90"
(dbx90) run
stopped in SUB at line 16 in file "fh4.£f90"
16 r = 0.5%1
(dbx90)
Printing the value of a variable, which may be local, in a COMMON block, or in a USEd module.

(dbx90) print i

I =2

(dbx90) next

17 i = ix%x3

(dbx90) print r

R=1

(dbx90) next

18 END SUBROUTINE sub
(dbx90) print i

I=6

Variables can also be assigned values.

(dbx90) assign i =7
I =7

(dbx90) cont

7 1.0000000

Program exited normally.

(dbx90) quit
%

Page 34

Debugging with dbx90

36 Troubleshooting dbx90

The diagnostic messages produced by dbx90 itself are intended to be self-explanatory.

If you receive the error message ‘Cannot exec dbx’ when starting dbx90 then you must set the environment variable
DBX90_DBXPATH to the pathname of dbx (or gdb, or xdb).

Page 35

Preprocessing with fpp

37 Overview of fpp

The fpp preprocessor is automatically invoked by the compiler driver when the —fpp option is used or the source file
has an option that implies preprocessing (e.g. ‘.ff90’), but may also be invoked from the compiler library directory
(usually /usr/local/lib/NAG Fortran).

38 fpp command line

fpp [option]... [input-file [output-file]]

39 Description of fpp

fpp is the preprocessor used by the NAG Fortran compiler. It optionally accepts two filenames as arguments: input-
file and output-file are, respectively, the input file read and the output file written by the preprocessor. By default
standard input and output are used.

When used via nagfor, either because the input source file type was automatically recognised as requiring preprocessing
(e.g. .£ff90 files), or the —fpp option was used, the macro __NAG_COMPILER RELEASE is automatically defined to
be the integer release number (major*10+minor, e.g. 61 for release 6.1), and the macro __NAG_COMPILER BUILD is
automatically defined to be the build number (for release 6.1 this will have a value greater than 6100).

40 fpp options

—c_com={yes| no}
By default, C style comments are recognized. Turn this off by specifying —c_com=no.

—Dname
Define the preprocessor variable name to be 1 (one). This is the same as if a —Dname=1 option appeared
on the fpp command line, or as if a
#define name 1
line appeared in the input file.

—Dname=def
Define name as if by a #define directive. This is the same as if a
#define name def
line appeared at the beginning of the input file. The —D option has lower precedence than the —U option.
Thus, if the same name is used in both a —U option and a —D option, the name will be undefined regardless
of the order of the options.

—e Accept extended source lines, up to 132 characters long.

—fixed Specifies fixed format input source.

—free Specifies free format input source.

—Ipathname
Add pathname to the list of directories which are to be searched for #include files whose names do not
begin with ‘/’. If the #include file name is enclosed in double-quotes ("..."), it is searched for first in

the directory of the file with the #include line; if the file name was enclosed in angle brackets (<. ..>) this
directory is not searched. Then, the file is searched for in directories named in —I options, and finally in
directories from the standard list.

Page 36

Preprocessing with fpp

-M Generate a list of makefile dependencies and write them to the standard output. This list indicates that
the object file which would be generated from the input file depends on the input file as well as the include
files referenced.

—macro={yes|no_com|no}
By default, macros are expanded everywhere. Turn off macro expansion in comments by specifying
—macro=no_com and turn off macro expansion all together by specifying —macro=no

P Do not put line numbering directives to the output file. Line numbering directives appear as
#line-number file-name

—Uname
Remove any initial definition of name, where name is an fpp variable that is predefined by a particular
preprocessor. Here is a partial list of variables that might be predefined, depending upon the architecture
of the system:

Operating System: unix, __unix and __SVR4;
Hardware: sun, __sun, sparc and __sparc.

—undef Remove initial definitions for all predefined symbols.

—W Suppress warning messages.
—wO0 Suppress warning messages.
—Xu Convert upper-case letters to lower-case, except within character-string constants. The default is not to

convert upper-case letters to lower-case.

—Xw For fixed source form only, treat blanks as insignificant. The default for fpp is that blanks are significant
in both source forms.

—Y directory
Use the specified directory instead of the standard list of directories when searching for #include files.

41 Using fpp

41.1 Source files

fpp operates on both fixed and free form source files. Files with the (non-case-sensitive) extension ‘.£’, ‘. £f’, ‘. for’
or ‘.ftn’ are assumed to be fixed form source files. All other files (e.g. those with the extension ‘.££90’) are assumed
to be free form source files. These assumptions can be overridden by the —fized and —free options. Tab format lines
are recognised in fixed form.

A source file may contain fpp tokens. An fpp token is similar to a Fortran token, and is one of:

e an fpp directive name;

e a symbolic name or Fortran keyword;

a literal constant;
e a Fortran comment;

e an fpp comment;

a special character which may be a blank character, a control character, or a graphic character that is not part
of one of the previously listed tokens.

41.2 Output

Output consists of a modified copy of the input plus line numbering directives (unless the —P option is used). A line
numbering directive has the form

#line-number file-name

and these are inserted to indicate the original source line number and filename of the output line that follows.

Page 37

Preprocessing with fpp

41.3 Directives

All fpp directives start with the hash character (#) as the first character on a line. Blank and tab characters may
appear after the initial ‘#’ to indent the directive. The directives are divided into the following groups:

e macro definitions;
e inclusion of external files;
e line number control;

e conditional source code selection.

41.4 Macro definition

The #define directive is used to define both simple string variables and more complicated macros:
#define name token-string

This is the definition of an fpp variable. Wherever ‘name’ appears in the source lines following the definition, ‘token-
string’ will be substituted for it.

#define name([argnamel[,argname2]...]) token-string

This is the definition of a function-like macro. Occurrences of the macro ‘name’ followed by a comma-separated
list of arguments within parentheses are substituted by the token string produced from the macro definition. Every
occurrence of an argument name from the macro definition’s argument list is substituted by the token sequence of the
corresponding macro actual argument.

Note that there must be no space or tab between the macro name and the left parenthesis of the argument list in this
directive; otherwise, it will be interpreted as a simple macro definition with the left parenthesis treated as the first
character of the replacement token-string.

#undef name

Remove any macro definition for name, whether such a definition was produced by a —D option, a #define directive
or by default. No additional tokens are permitted on the directive line after the name.

The macro NAGFOR is defined by default.

41.5 Including external files

There are two forms of file inclusion:
#include "filename"

and

#include <filename>

Read in the contents of filename at this location. The lines read in from the file are processed by fpp as if they were
part of the current file.

When the <filename> notation is used, filename is only searched for in the standard “include” directories. See the —I
and —Y options above for more detail. No additional tokens are permitted in the directive line after the final ‘"’ or
4>’.

41.6 Line number control

#line-number ["filename"]

Generate line control information for the next pass of the compiler. The line-number must be an unsigned integer
literal constant, and specifies the line number of the following line. If " filename" does not appear, the current filename
is unchanged.

Page 38

Preprocessing with fpp

41.7 Conditional selection of source text

There are three forms of conditional selection of source text:

1. #if condition_1
block_1
#elif condition_2
block_2
#else
block_n
#endif

2. #ifdef name
block_1
#elif condition
block_2
#else
block_n
#endif

3. #ifndef name
block_1
#elif condition
block_2
#else
block_n
#endif

The “#else” and “#elif” parts are optional. There may be more than one “#elif” part. Each condition is an expression
consisting of fpp constants, macros and macro functions. Condition expressions are similar to cpp expressions, and may
contain any cpp operations and operands with the exception of C long, octal and hexadecimal constants. Additionally,
fpp will accept and evaluate the Fortran logical operations .NOT., .AND., .OR., .EQV., .NEQV., the relational operators
.GT., .LT., .LE., .GE., and the logical constants .TRUE. and .FALSE..

42 Preprocessing details

42.1 Scope of macro or variable definitions

The scope of a definition begins from the place of its definition and encloses all the source lines (and source lines from
#included files) from that definition line to the end of the current file.

However, it does not affect:

e files included by Fortran INCLUDE lines;

fpp and Fortran comments;

e IMPLICIT single letter specifications;

FORMAT statements;

e numeric and character constants.

The scope of the macro effect can be limited by means of the #undef directive.

Page 39

Preprocessing with fpp

42.2 End of macro definition

A macro definition can be of any length but is only one logical line. These may be split across multiple physical lines
by ending each line but the last with the macro continuation character ‘\’ (backslash). The backslash and newline are
not part of the replacement text. The macro definition is ended by a newline that is not preceded by a backslash.

For example:

#define long_macro_name(x,\
y) x*y

42.3 Function-like macro definition

The number of macro call arguments must be the same as the number of arguments in the corresponding macro
definition. An error is produced if a macro is used with the wrong number of arguments.

42.4 Cancelling macro definitions

#undef name

After this directive, ‘name’ will not be interpreted by fpp as a macro or variable name. This directive has no effect if
‘name’ is not a macro name.

42.5 Conditional source code selection

#if condition

Condition is a constant expression, as specified below. Subsequent lines up to the first matching #elif, #else or
#endif directive appear in the output only if the condition is true.

The lines following a #elif directive appear in the output only if

e the condition in the matching #if directive was false,
e the conditions in all previous matching #elif directives were false, and

e the condition in this #elif directive is true.

If the condition is true, all subsequent matching #elif and #else directives are ignored up to the matching #endif.
The lines following a #else directive appear in the output only if all previous conditions in the construct were false.

The macro function ‘defined’ can be used in a constant expression; it is true if and only if its argument is a defined
macro name.

The following operations are allowed.
e C language operations: <, > ==, = >= <=+ - / * . << > & |, ! && and ||. These are interpreted in
accordance with C language semantics, for compatibility with cpp.

e Fortran language operations: .AND., .OR., .NEQV., .XOR., .EQV., .NOT., .GT., .LT., .LE., .GE., .NE., .EQ.
and **,

e Fortran logical constants: .TRUE. and .FALSE..

Only these items, integer literal constants, and names can be used within a constant expression. Names that are not
macro names are treated as if they were ‘0’. The C operation ‘!=" (not equal) can be used in #if or #elif directives,
but cannot be used in a #define directive, where the character ‘!’ is interpreted as the start of a Fortran comment.

Page 40

Preprocessing with fpp

#ifdef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if the name has been
defined, either by a #define directive or by the —D option, and in the absence of an intervening #undef
directive. No additional tokens are permitted on the directive line after name.

#ifndef name
Subsequent lines up to the matching #else, #elif, or #endif appear in the output only if name has not been
defined, or if its definition has been removed with an #undef directive. No additional tokens are permitted
on the directive line after name.

#elif constant-expression
Any number of #elif directives may appear between an #if, #ifdef, or #ifndef directive and a matching
#else or #endif directive.

#else This inverts the sense of the conditional directive otherwise in effect. If the preceding conditional would
indicate that lines are to be included, then lines between the #else and the matching #endif are ignored.
If the preceding conditional indicates that lines would be ignored, subsequent lines are included in the
output.

#endif End a section of lines begun by one of the conditional directives #if, #ifdef, or #ifndef. Each such directive
must have a matching #endif.

42.6 Including external files

Files are searched as follows:

for #include "filename":

e in the directory, in which the processed file has been found;
e in the directories specified by the —I option;

e in the default directory.
for #include <filename>:

e in the directories specified by the —I option;

e in the default directory.

Fpp directives (lines beginning with the # character) can be placed anywhere in the source code, in particular imme-
diately before a Fortran continuation line. The only exception is the prohibition of fpp directives within a macro call
divided on several lines by means of continuation symbols.

42.7 Comments

Fpp permits comments of two kinds:

1. Fortran language comments. A source line containing one of the characters ‘C’, ‘c’, ‘*’, ‘d’ or ‘D’ in the first
column is considered to be a comment line. Within such lines macro expansions are not performed. The ‘!’
character is interpreted as the beginning of a comment extending to the end of the line. The only exception is
the case when this symbol occurs within a constant expression in a #if or #elif directive.

2. Fpp comments enclosed in the ‘/*’ and ‘*/’ character sequences. These are excluded from the output. Fpp
comments can be nested so that for each opening sequence ‘/*’ there must be a corresponding closing sequence
‘x/’. Fpp comments are suitable for excluding the compilation of large portions of source instead of commenting
every line with Fortran comment symbols. Using “#if 0 ... #endif” achieves the same effect without being
ridiculous.

Page 41

Preprocessing with fpp

42.8 Macro functions

The macro function
defined(name) or defined name

expands to .TRUE. if name is defined as a macro, and to .FALSE. otherwise.

42.9 Macro expression
If, during expansion of a macro, the column width of a line exceeds column 72 (for fixed form) or column 132 (for free
form), fpp inserts appropriate continuation lines.

In fixed form there are limitations on macro expansion in the label part of the line (columns 1-5):

e a macro call (together with possible arguments) should not extend past column 5;
e a macro call whose name begins with one of the Fortran comment characters is treated as a comment;
e a macro expansion may produce text extending beyond the column 5 position. In such a case a warning will be

issued.

In the fixed form when the —Xw option has been specified an ambiguity may appear if a macro call occurs in a
statement position and a macro name begins or coincides with a Fortran keyword. For example, in the following text:

#define call p(x) call f(x)
call p(0)

fpp can not determine with certainty how to interpret the ‘call p’ token sequence. It could be considered as a macro
name. The current implementation does the following:

e the longer identifier is chosen (callp in this case);
e from this identifier the longest macro name or keyword is extracted;

e if a macro name has been extracted a macro expansion is performed. If the name begins with some keyword fpp
outputs an appropriate warning;

e the rest of the identifier is considered as a whole identifier.

In the above example the macro expansion would be performed and the following warning would be output:
warning: possibly incorrect substitution of macro callp

It should be noted that this situation appears only when preprocessing fixed form source code and when the blank
character is not being interpreted as a token delimiter. It should be said also that if a macro name coincides with a
keyword beginning part, as in the following case:

#define INT INTEGER*8
INTEGER k

then in accordance with the described algorithm, the INTEGER keyword will be found earlier than the INT macro
name. Thus, there will be no warning when preprocessing such a macro definition.

43 fpp diagnostics

There are three kinds of diagnostic messages:

e warnings. preprocessing of source code is continued and the return value remains to be 0.

Page 42

Preprocessing with fpp

e crrors. Fpp continues preprocessing but sets the return code to a nonzero value, namely the number of errors.

e fatal error. Fpp cancels preprocessing and returns a nonzero return value.

The messages produced by fpp are intended to be self-explanatory. The line number and filename where the error
occurred are printed along with the diagnostic.

Page 43

Extensions

44 Non-standard Extensions

The following extensions to the standard Fortran language are accepted by the NAG Fortran Compiler.

44.1 BOZ literal constants outside DATA statements

The NAG Fortran Compiler accepts hexadecimal, octal and binary literal constants in any context where an integer
literal would be accepted. Such constants have a data type of default INTEGER, unless there are more digits in the BOZ
constant than will fit in a default INTEGER; e.g., Z’ 12345678 would be of type default INTEGER, and Z’ 123456789’
would be a 64-bit integer.

44.2 Longer Names

Names may be up to 199 characters long.

44.3 Dollar Sign in Names

The dollar sign ‘¢’ may appear in names as if it were a letter. On some systems this name is directly used in the link
name, but on others, it is translated to DOLLAR.

44.4 Input/output endian/format conversion

Runtime conversion of unformatted input/output files is enabled by the CONVERT= specifier. This is an OPEN statement
specifier, and takes a scalar default character argument; the accepted values are:

BIG_ENDIAN
synonym for BIG_IEEE;

BIG_IEEE_DD
big-endian with IEEE single and double precision floating point but with double-double for quad precision;
BIG_IEEE big-endian with IEEE floating point include 128-bit quad precision;

BIG_NATIVE
big-endian with native floating-point formats;

LITTLE_ENDIAN
synonym for LITTLE_IEEE;

LITTLE_TIEEE_DD
little-endian with IEEE single and double precision floating point but with double-double for quad precision;

LITTLE_IEEE
little-endian with IEEE floating point include 128-bit quad precision;

LITTLE_NATIVE
little-endian with native floating-point formats;

NATIVE native endianness and data format.

It is also possible to specify this with an environment variable at runtime; when unit n is opened, if the environment
variable FORT_CONVERTn exists, its value is interpreted as a CONVERT= specifier value. If the environment variable exists
it takes precedence over any CONVERT= specifier in the OPEN statement. If the environment variable does not exist,
and there is no CONVERT= specifier in the OPEN statement, the conversion mode is taken from the -convert= option at
compile time; the default is NATIVE (i.e. no conversion).

Page 44

Extensions

The CONVERT= specifier is also available in the INQUIRE statement, and sets its argument to the current conversion
mode or to *UNKNOWN if the file is not connected for unformatted input/output.

44.5 Elemental BIND(C) procedures

Interoperable (BIND(C)) procedures are permitted to be declared as ELEMENTAL. Such a procedure must satisfy the
normal Fortran requirements for elemental procedures, in particular they must have scalar dummy arguments and
must be pure (free from side-effects).

44.6 Maximum array rank is 31

The maximum rank of an array has been increased to 31 (the Fortran 2008 standard only requires 15, and previous
Fortran standards only required 7). For example,

REAL array(2,2)

declares a 30-dimensional array (which will take 4GiB of memory to store).

45 Obsolete Extensions

The following extensions were common in the Fortran 77 era, and are still in frequent use (though they have been
superseded and are thus unnecessary). Warning messages (marked ‘Extension:’) are produced for each occurrence of
any extension; these particular ones may be suppressed with the —w=z77 option.

45.1 Byte Sizes

Byte sizes for REAL, INTEGER, LOGICAL and COMPLEX are accepted and mapped to Modern Fortran KINDS.

Byte Size Specification | Standard Fortran Using F90_KIND or ISO_.FORTRAN_ENV
REAL*2 Real Real(reall6)
REAL*4 Real Real(real32)
REAL*8 Double Precision Real(real64)
REAL*16 Real(Selected Real Kind(30)) Real(real128)
COMPLEX*4 Complex(Selected _Real Kind(3)) | Complex(reall6)
COMPLEX*8 Complex Complex(real32)
COMPLEX*16 Complex(Kind(0d0)) Complex(real64)
COMPLEX*32 Complex(Selected _Real Kind(30)) | Complex(reall28)
INTEGER*1 Integer(Selected Int_Kind(2)) Integer(int8)
INTEGER*2 Integer(Selected_Int_Kind(4)) Integer(int16)
INTEGER*4 Integer Integer(int32)
INTEGER*8 Integer(Selected Int_Kind(18)) Integer(int64)
Byte Size Specification | Standard Fortran Using F90_KIND
LOGICAL*1 Logical(byte)
LOGICAL*2 Logical(twobyte)
LOGICAL*4 Logical Logical(word)
LOGICAL*S Logical(logical64)

The byte length may also be overridden in the type declaration, similar to overriding the character length. For example,

REAL Xx4, Y*(8)

Page 45

Extensions

45.2 TAB Format

The occurrence of a TAB character in fixed-form source is treated as follows:

a. an initial TAB followed by a digit is expanded to 5 spaces (putting the digit in the continuation column),

b. an initial TAB followed by any other character is expanded to 6 spaces (putting the character after the TAB in
column 7, making the line the initial line of a statement), and

c. other TAB characters are treated as single blanks except in character context where they remain TABs (but
they are still treated as taking one column for the purposes of line length).

45.3 Hollerith Constants
Hollerith constants may be used as actual arguments or to initialise objects in DATA. In either case they must be
associated with an object of intrinsic numeric data type, not with a CHARACTER or derived type object.

Hollerith i/o (i.e., use of the A edit descriptor with non-CHARACTER data) is only enabled if the using subprogram was
compiled with the —hollerith_io or —dusty option.

45.4 D (debug) lines in Fixed Source Form
A line with the letter ‘D’ (or ‘d’) in column one is a D line. If the —d_lines option is used, this will be treated as a
normal Fortran line, as if the D were a space. Otherwise, it will be treated as a comment line, as if the D were a C.
For example, in

SUBROUTINE TEST(N)

INTEGER N
D PRINT *,’TESTING N’

the PRINT statement will be compiled only if —d_lines is used.

Note that if the initial line of a statement is a D line, any continuation lines it may have must also be D lines. Similarly,
if the initial line of a statement is not a D line, any continuation lines must not be D lines.

A D line can use TAB format, with the TAB expanding to one less space as the letter D already accounts for a space.

45.5 Increased Line Length in Fixed Source Form

The —152 option increases the effective length of each fixed source form input line from 72 characters to 132 characters.

Note that when this option is used the NAG Fortran Compiler no longer conforms to the Fortran language standard.
The meaning of a program will change if it contains a character constant which is continued across a line boundary.
A standard-conforming program containing an H-edit descriptor which is continued across a line boundary will very
likely be rejected.

For new Fortran programs we recommend the use of free source form instead of this option. Free source form provides
superior detection of typographical errors and is also part of the Fortran standard and thus fully portable to all
standard-conforming compilers.

45.6 Increased Maximum Number of Continuation Lines

The —maxcontin=N option increases the limit on the maximum number of continuation lines to N. Note that this
option can affect both fixed source form and free source form, but never decreases the continuation line limit below
the standard.

Page 46

Extensions

The Fortran 90 and 95 standards specified that the maximum number of continuation lines in fixed source form was 19,
and that the maximum number of continuation lines in free source form was 39. The Fortran 2003 standard increased
this to 255 lines regardless of source form.

45.7 Intrinsic functions with mixed-kind arguments
The ATAN, ATAN2, DIM, MAX, MIN, MOD, MODULO and SIGN intrinsic functions will accept integer and real arguments that
differ in kind; note that integer and real arguments still cannot be mixed in a single intrinsic function reference.

For SIGN, the kind of the result is the same as the kind of the first argument (which supplies the magnitude of the
result), ignoring the kind of the second argument (which only supplies the sign of the result). For all the others, the
kind of the result is the same as for arithmetic operations, i.e. for integers the kind with the largest number of digits,
and for reals the kind with the greatest precision.

For example, if X is REAL(real32) and Y is REAL(real64):
MAX (X,Y) has kind real64 and its value is equal to MAX (REAL (X,real64),Y);
SIGN(X,Y) has kind real32 and its value is equal to SIGN(X,REAL(SIGN(1.0_real64,Y),real32)).

45.8 ACCESS=’APPEND’ specifier on OPEN statement

The VAX FORTRAN specifier ACCESS=’>APPEND’ can be used on the OPEN statement. It is equivalent to specifying
both ACCESS=’SEQUENTIAL’ and POSITION=’APPEND’. For example

OPEN(17,FILE="my.log’ ,ACCESS=’APPEND’)
has the same effect as
OPEN(17,FILE="my.log’ ,POSITION="APPEND’) ! ACCESS=’SEQUENTIAL’ is the default.

This is supported only as an aid to porting old programs; it should be changed to the POSITION=’APPEND’ specifier.

45.9 VAX FORTRAN TYPE statement

This statement has identical syntax and semantics to the PRINT statement, except that the keyword TYPE is used
instead of PRINT. Some forms of this statement where the format begins with a name are ambiguous with respect to a
derived type definition, and those forms are only treated as a TYPE statement if that name is used or declared earlier
in the scoping unit; otherwise, it is treated as a derived type definition.

For example,
TYPE *,’Hello’
is equivalent to
PRINT *,’Hello’
Processing a source file containing VAX FORTRAN TYPE statements with the enhanced polisher will turn all TYPE
statements into PRINT statements. The ordinary polisher will not change any TYPE statements; furthermore, if one of

the ambiguous forms is used, the remainder of the file will be incorrectly indented, as the ordinary polisher does not
have semantic analysis and therefore assumes the ambiguous form is the beginning of a type definition.

45.10 Auto-skipping NAMELIST input

The Fortran standard requires that when namelist input is performed, the name after the ampersand in the input
record must match the namelist group name (in the READ statement). However, a common extension is for the i/o
library to “skip forwards” in the file, looking for an input record that matches namelist initial record required.

Page 47

Extensions

Normally, the NAG Fortran system raises an i/o error condition if the names do not match, but when auto-skipping
namelist input is in effect, instead it skips records until it reaches the end of the file or finds a record that begins with
an ampersand and the correct name.

For example, given the program
PROGRAM asnl
INTEGER x,y
NAMELIST/name/x,y
READ (* ,name)

PRINT *,’Result’,x,y
END PROGRAM

and the input data

&wrong x = 999 y = -999 /
&name x = 123 y = 456 /

with auto-skipping namelist it will print
Result 123 456

Auto-skipping namelist is controlled by runtime options. The environment variable NAGFORTRAN_RUNTIME_OPTIONS con-
tains a comma-separated list of runtime options; auto-skipping namelist is enabled by the option autoskip_namelist
or log_autoskip_namelist. The latter option produces an informative message to standard error, displaying where
the namelist input occurred, for example:

[example.f90, line 5: Looking for namelist group NAME, skipping WRONG]

45.11 Legacy Application Support

The —dusty option downgrades the category of common errors found in “legacy” software from “Error” to “Warning”,
allowing such programs to be compiled and run. (The messages may be suppressed altogether by additionally specifying
the —w option.)

This option also effectively provides the extensions of allowing COMMON blocks to be initialised outside of BLOCK DATA,
and of accepting VAX format octal and hexadecimal constants (these have the forms ’...’°0 and .. .’X respectively).

45.12 Mismatched Argument Lists

The —mismatch option downgrades checking of procedure argument lists so that inconsistencies between calls to
routines which are not in the current file being processed produce warning messages rather than error messages.

The —mismatch_all option further downgrades argument list checking so that incorrect calls to routines present in the
current file being processed produce warning messages instead of error messages.

45.13 Double Precision Complex Extensions

Double precision complex entities may be declared with the DOUBLE COMPLEX keywords instead of the standard Fortran
‘Complex (Kind (0d0))’ specification.

If the —dcfuns option has been used, additional intrinsic functions are available (see the documentation of the option
for full details). These functions have all been redundant since Fortran 90.

Page 48

Intrinsic Modules

46 Intrinsic Module Overview

A number of intrinsic modules are provided that are available for use in programs. An intrinsic module is one that is
pre-compiled or built in to the compiler system; several of these are part of Fortran 2003, others are specific to NAG.

The standard intrinsic modules from Fortran 2003 that are available are:

ieee_arithmetic Special facilities for IEEE floating-point arithmetic
ieee_exceptions IEEE arithmetic exception handling

ieee_features IEEE feature control

iso_c_binding Facilities for interface to C functions
iso_fortran_env Fortran-specific environmental facilities

The non-standard intrinsic modules supplied by NAG are:

f90_gc Garbage collector control

f90_iostat Input/output error codes (source form provided)
£90_kind Kind number parameters (source form provided)
f90_preconn_io File preconnection control

£90_stat STAT= error codes (source form provided)
f90_unix_dir Unix system functions — directories and files
f90_unix_dirent Unix system functions — directory reading
f90_unix_env Unix system functions — environment
f90_unix_errno Unix system functions — error codes

f90_unix_io Unix system functions — input/output (incomplete)
f90_unix_proc Unix system functions — processes

Note that although the above f90_unix_* modules contain Unix-specific functions, in many cases these are also usable
on Windows and Mac OS X; a function that is not available can still be called but will return the ENOSYS error code.

47 190 _gc

A module is provided for controlling the garbage collector more precisely, called “F90_GC”. It contains the following
procedures described below.

In the description of each procedure, an argument whose KIND is denoted by ‘*’ can accept any kind of that type. Other
KIND indications use the named parameters from the FOO_KIND module; these named parameters are not, however,
exported from F90_GC.

SUBROUTINE ENABLE_INCREMENTAL_GC()

Enables incremental garbage collection; once enabled, it cannot be disabled. Full collections will still be performed with
a frequency determined by the “Full GC frequency” setting (see GET_FULL_GC_FREQUENCY and SET_FULL_GC_FREQUENCY.

LOGICAL(word) FUNCTION EXPAND_HEAP(N)
INTEGER(*) , INTENT(IN) :: N

This function attempts to expand the heap by N blocks (of 4K bytes), returning . TRUE. if and only if it is successful.
This is unaffected by the heap expansion setting (see GET_HEAP_EXPANSION and SET_HEAP_EXPANSION).

Note that on some systems this may return a false indication of success as the operating system delays the actual
allocation of memory until an attempt is made to use it — at which point the program may be aborted. Therefore
this function should not be used to attempt to allocate all the virtual memory on a system.

SUBROUTINE GCOLLECT()

Page 49

Intrinsic Modules

Manually initiates a garbage collection; this is a full collection even if incremental collection has been enabled (see
ENABLE_INCREMENTAL_GC). This is not affected by the “GC allowed” setting (see GET_GC_ALLOWED and SET_GC_ALLOWED).

SUBROUTINE GET_BYTES_SINCE_GC(NBYTES)
INTEGER(int32 or int64),INTENT(OUT) :: NBYTES

Returns the number of bytes allocated since the last collection.

SUBROUTINE GET_FREE_BYTES(NBYTES)
INTEGER(int32 or int64),INTENT(OUT) :: NBYTES

Returns a conservative estimate of the number of free bytes in the heap.

SUBROUTINE GET_FULL_GC_FREQUENCY (FREQUENCY)
INTEGER(int16 or int32 or int64),INTENT(OUT) :: FREQUENCY

Returns the number of partial collections that are done between each full collection when incremental collection is
enabled (see ENABLE_INCREMENTAL_GC). This has no effect on manual collection (see GCOLLECT) or when incremental
collection has not been enabled. The default value in Release 5.2 is 4.

SUBROUTINE GET_GC_ALLOWED (ALLOWED)
LOGICAL(*) ,INTENT(OUT) :: ALLOWED

Returns the “GC allowed” setting; the default setting is . TRUE.

SUBROUTINE GET_GC_VERBOSITY(VERBOSITY)
INTEGER (%) , INTENT(OUT) :: VERBOSITY

Returns the “GC verbosity” level; this has a range of 0-100, and the default level is zero. Increasing the verbosity
level increases the number of informational messages producing during garbage collection. In Release 5.2, the only
significant verbosity levels are 0 and 10.

SUBROUTINE GET_HEAP_EXPANSION (ALLOWED)
LOGICAL(*) ,INTENT(OUT) :: ALLOWED

Returns the automatic heap expansion setting; the default setting is .TRUE.. Even when automatic heap expansion
is disabled, the heap will still be expanded if that is necessary to satisfy an allocation request.

SUBROUTINE GET_HEAP_SIZE(NBYTES)
INTEGER(int32 or int64),INTENT(OUT) :: NBYTES

Returns the current heap size in bytes, or -1 if the heap size cannot be represented in the integer variable (i.e. if the
current heap size is more than 2G bytes and the integer variable is only a 32-bit one).

SUBROUTINE GET_MAX_GC_RETRIES(N_RETRIES)
INTEGER (%) ,INTENT(OUT) :: N_RETRIES

Returns the maximum number of garbage collections attempted before reporting failure to the caller; if the allocation
was not initiated by an ALLOCATE statement with a STAT= clause, this will result in program termination. The default
value in Release 5.2 is zero.

SUBROUTINE GET_MAX_HEAP_SIZE(NBYTES)
INTEGER(int32 or int64),INTENT(OUT) :: NBYTES

Page 50

Intrinsic Modules

Returns the maximum heap size setting, or zero if no maximum heap size has been set. The default setting is zero.
INTEGER(int32) FUNCTION NCOLLECTIONS()
Returns the number of garbage collections that have been performed.

SUBROUTINE SET_FULL_GC_FREQUENCY (FREQUENCY)
INTEGER(int16 or int32 or int64),INTENT(IN) :: FREQUENCY

Sets the number of partial garbage collections to be done between each full collection; this has no effect unless
incremental collection has been enabled (see ENABLE_INCREMENTAL_GC). A full collection may still be done if there is a
substantial increase in the number of in-use blocks.

SUBROUTINE SET_GC_ALLOWED (ALLOWED)
LOGICAL(*) ,INTENT(IN) :: ALLOWED

Controls the “GC allowed” setting; when this setting is .FALSE., automatic garbage collection is inhibited. This does
not affect manual garbage collection (see GCOLLECT).

SUBROUTINE SET_GC_VERBOSITY(VERBOSITY)
INTEGER (%) ,INTENT(IN) :: VERBOSITY

Sets the verbosity level; the default value is zero, and the range is limited to 0-100. In Release 5.2, the only significant
levels are 0 and 10.

SUBROUTINE SET_HEAP_EXPANSION (ALLOWED)
LOGICAL(*) ,INTENT(IN) :: ALLOWED

Controls whether automatic heap expansion is allowed; if this is .FALSE., automatic heap expansion will only occur if
necessary to satisfy an allocation request (normally the heap is expanded when an heuristic determines that it would
be advantageous). This does not affect manual heap expansion (see EXPAND_HEAP).

SUBROUTINE SET_MAX_GC_RETRIES(N_RETRIES)
INTEGER(*) ,INTENT(IN) :: N_RETRIES

Sets the maximum number of garbage collections attempted before reporting out of memory after heap expansion fails
(i.e. is refused by the operating system). The default setting in Release 5.2 is zero.

SUBROUTINE SET_MAX_HEAP_SIZE(N)
INTEGER(int32 or int64),INTENT(IN) :: N

Sets the maximum size of the heap to N bytes. This will prevent the heap from automatic expansion beyond the
specified limit, and prevent it from automatic expansion entirely if it is already beyond the limit.

48 190_iostat

This module contains definitions of integer parameters for all the IOSTAT values that can be returned as a result of
use of an input/output or data transfer statement.

For example:
USE f90_iostat
INTEGER ios

OPEN (10, FILE=’a.b’, IOSTAT=iost, STATUS=’NEW’)
IF (iost==I0ERR_NEW_FILE_EXISTS) PRINT *, "File a.b existed already"

Page 51

Intrinsic Modules

49 190 kind

This module contains definitions of integer parameters that can be used as kind numbers. Users wishing to write
portable software making use of non-default kinds should USE this module and use the parameters instead of nu-
meric values. For example, users should use LOGICAL (KIND=BYTE) instead of LOGICAL(KIND=1). The available KIND
parameters are shown below; their exact meanings (i.e. the values they represent) are implementation dependent.

INTEGER,PARAMETER :: SINGLE

For REAL and COMPLEX, selects the default real or default complex kind; this is equivalent to leaving the KIND selector
off entirely.

INTEGER,PARAMETER :: DOUBLE

Selects the double precision real kind; this is equivalent to declaring REAL entities using the DOUBLE PRECISION type
specifier, to declaring COMPLEX entities using COMPLEX(KIND(0dO)), and to using the exponent letter D on literal
constants.

INTEGER,PARAMETER :: QUAD

REAL/COMPLEX kind selector for real and complex types with approximately twice the precision of DOUBLE. This might
not be available on some systems; on a system without this type, the value of this parameter will be negative.

INTEGER,PARAMETER :: REAL16

REAL/COMPLEX kind selector for real and complex types that are represented using 16-bit floating-point numbers.
INTEGER,PARAMETER :: REAL32

REAL/COMPLEX kind selector for real and complex types that are represented using 32-bit floating-point numbers.
INTEGER,PARAMETER :: REAL64

REAL/COMPLEX kind selector for real and complex types that are represented using 64-bit floating-point numbers.
INTEGER,PARAMETER :: REAL64x2

REAL/COMPLEX kind selector for real and complex types that are represented using “double-double” floating-point num-
bers. A double-double floating-point number consists of two 64-bit values, one of which is at least DIGITS (1. _REAL64)
smaller than the other; this has almost twice the precision of REAL64 (except when near zero), but a smaller exponent
range.

This type is not available on all systems; on a system without this type, the value of this parameter is —1.
INTEGER,PARAMETER :: REAL128

REAL/COMPLEX kind selector for real and complex types that are represented using 128-bit floating-point numbers.
This will select a “true 128-bit” floating-point type if one is available, and if not it will select a “double-double”
floating-point type if that is available; if no 128-bit floating-point type is available the value of this parameter is -1.

INTEGER,PARAMETER :: INT8

INTEGER kind selector for integer types with at least 8 bits of precision.

Page 52

Intrinsic Modules

INTEGER,PARAMETER :: INT16

INTEGER kind selector for integer types with at least 16 bits of precision.

INTEGER,PARAMETER :: INT32

INTEGER kind selector for integer types with at least 32 bits of precision.

INTEGER,PARAMETER :: INT64

INTEGER kind selector for integer types with at least 64 bits of precision.

INTEGER,PARAMETER :: BYTE

LOGICAL kind selector for logical types occupying only one byte of memory.

INTEGER,PARAMETER :: TWOBYTE

LOGICAL kind selector for logical types occupying the same space as INTEGER (INT16) entities.

INTEGER,PARAMETER :: WORD
LOGICAL kind selector for a 32-bit logical type.
INTEGER,PARAMETER :: LOGICAL64

LOGICAL kind selector for a 64-bit logical type.
INTEGER,PARAMETER :: ASCII

CHARACTER kind selector for the ASCII character set.
INTEGER,PARAMETER :: JIS

CHARACTER kind selector for the JIS X 0213:2004 character set.
INTEGER,PARAMETER :: UCS2

CHARACTER kind selector for the UCS-2 (Unicode) character set.
INTEGER,PARAMETER :: UCS4

CHARACTER kind selector for the UCS-4 (ISO 10646) character set.

50 f90_preconn_io

This module enables alteration of the default values used by automatically preconnected files.

Page 53

Intrinsic Modules

50.1 Procedures

Note that in the descriptions below, LOGICAL (*) means any kind of LOGICAL. Also, note that although the VERBOSE
argument is an optional argument, the actual argument is not permitted to be a non-present optional dummy argument.

SUBROUTINE GET_PCIO_OPTIONS(BLANK,POSITION,PREFIX,VERBOSE)
CHARACTER(*) ,0PTIONAL, INTENT(OUT) :: BLANK,POSITION,PREFIX
LOGICAL(*) ,0PTIONAL,INTENT(QOUT) :: VERBOSE

Returns the current settings for file preconnection; the meanings for these settings are described under the IOINIT
routine. Both the BLANK and POSITION values are returned in upper case, even if lower case was used in a call to
IOINIT to set them.

SUBROUTINE IOINIT(BLANK,POSITION,PREFIX,VERBOSE)
CHARACTER(*) ,0PTIONAL, INTENT(IN) :: BLANK,POSITION,PREFIX
LOGICAL(*) ,0PTIONAL,INTENT(IN) :: VERBOSE

This procedure controls automatic file preconnection. Files can be automatically preconnected when a logical unit is
initially referenced without an OPEN statement; preconnection does not occur again after file CLOSE.

The name of the file to be preconnected is determined first by searching for an environment variable of the form FORTnn
where nn is the two-digit logical unit number; e.g. FORT03. If this environment variable is found its value is used as
the filename; otherwise the name “fort.n” is used; e.g. ‘fort.3’. The file is opened either with FORM=’FORMATTED’
or FORM="UNFORMATTED’ depending on whether the initial reference is with a formatted or unformatted i/o statement.

The BLANK and POSITION arguments control the BLANK= and POSITION= keywords in the implied OPEN statement when
the file is preconnected; initially these are set to BLANK=’NULL’ and POSITION=’REWIND’. Note that these have no
meaning (and no effect) for unformatted files.

The PREFIX argument changes the prefiz used to find the environment variable containing the preconnected file name.
Initially this is ‘FORT’. Only the first 30 characters of PREFIX are used.

The VERBOSE argument controls activity reporting; if it is .TRUE., subsequent preconnection activity will produce
informative messages on the standard error unit.

50.2 Example

USE FOO_PRECONN_IO
CALL IOINIT(BLANK=’ZERO’,PREFIX=’MYFILE’)
READ (99,10) I,J,K,L,M

10 FORMAT(I3,I1,I3,I1,I3)

When the READ statement is executed, the environment variable MYFILE99 is interrogated to discover which file is to
be automatically preconnected to unit 99. The unit will be connected with BLANK=’ZERQ’. If no environment variable
is found the file ‘fort.99’ will be opened.

51 f90_stat

This module contains definitions of integer parameters for all the STAT= values that can be returned as a result of use
of an ALLOCATE or DEALLOCATE statement.

51.1 Parameters

INTEGER,PARAMETER :: STAT_ALREADY_ALLOCATED

Page 54

Intrinsic Modules

An allocatable variable in an ALLOCATE statement is already currently allocated.
INTEGER,PARAMETER :: STAT_MEMORY_LIMIT_EXCEEDED

An allocation in an ALLOCATE statement requested more memory than the limit in this version of the NAG Fortran
compiler.

INTEGER,PARAMETER :: STAT_NO_MEMORY

Insufficient free memory available to satisfy the requested allocation.
INTEGER,PARAMETER :: STAT_NOT_ALLOCATED

An allocatable variable in a DEALLOCATE statement is not currently allocated.
INTEGER,PARAMETER :: STAT_NOT_ASSOCIATED

A pointer in a DEALLOCATE statement is disassociated.
INTEGER,PARAMETER :: STAT_PART_OF_A_LARGER_OBJECT

A pointer in a DEALLOCATE statement refers to part of a larger object.
INTEGER,PARAMETER :: STAT_POINTER_UNDEFINED

A pointer in a DEALLOCATE statement is undefined. (This value is never returned to the user program, which is always
immediately terminated if the use of an undefined pointer is detected.)

INTEGER,PARAMETER :: STAT_WRONG_COLOUR

A pointer in a DEALLOCATE statement is associated with a target that was not created by pointer allocation.

51.2 Example

USE f90_stat

REAL,ALLOCATABLE :: big(:,:,:)

INTEGER :: status

ALLOCATE(big(100,1024,1024) ,STAT=status)

IF (status==STAT_NO_MEMORY) PRINT *,’Qut of memory’

52 {90 _unix_*

These modules are described in the next part, Modern Fortran API to Posiz.

53 ieee_*, iso_c_binding, iso_fortran_env

These modules are described in the Fortran 2003 Extensions part, under 10.6 IEEE arithmetic support, 10.5.1 The
ISO_C_BINDING module and 10.8.5 The ISO_.FORTRAN_ENV module respectively.

Page 55

Modern Fortran API to Posix

54 Posix Module Overview

The following modules are provided by NAG as a partial interface to the operating system facilities defined by ISO/TEC
9945-1:1990 Portable Operating System Interface (POSIX) — Part 1: System Application Program Interface (API) [C
Language].

f90_unix_dir Directories and Files
f90_unix_dirent Directory Reading
f90_unix_env Environment
f90_unix_errno Error Codes

f90_unix file File Characteristics
£90_unix_io Input/Output (incomplete)
f90_unix_proc Processes

55 190 _unix_dir

This module contains part of a Fortran API to functions detailed in ISO/IEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The procedures in this module are from sections 5.2: Working Directory, 5.3.3 Set File Creation Mask, 5.3.4 Link to
a File, 5.4 Special File Creation and 5.5 File Removal.

Error handling is described in FOO_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All the procedures in this module are both generic and specific.

55.1 Parameters

INTEGER,PARAMETER :: MODE_KIND

The integer kind used to represent file permissions (see ISO/IEC 9945-1). Parameters for specific permissions are
contained in FOO_UNIX FILE.

55.2 Procedures

SUBROUTINE CHDIR(PATH,ERRNO)
CHARACTER(*) ,INTENT(IN) :: PATH
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Sets the current working directory to PATH. Note that any trailing blanks in PATH may be significant. If ERRNO is
present it receives the error status.

Possible error conditions include EACCES, ENAMETOOLONG, ENOTDIR and ENOENT (see F90_UNIX_ERRNO).

SUBROUTINE GETCWD(PATH,LENPATH,ERRNO)

CHARACTER(*) ,0PTIONAL,INTENT(QOUT) :: PATH

INTEGER (int32) ,0PTIONAL,INTENT(OUT) :: LENPATH
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Accesses the current working directory information. If PATH is present, it receives the name of the current working
directory, blank-padded or truncated as appropriate if the length of the current working directory name differs from

Page 56

Modern Fortran API to Posix

that of PATH. If LENPATH is present, it receives the length of the current working directory name. If ERRNO is present
it receives the error status.

If neither PATH nor LENPATH is present, error EINVAL is raised. If the path to current working directory cannot be
searched, error EACCES is raised. If PATH is present and LENPATH is not present, and PATH is shorter than the current
working directory name, error ERANGE is raised. (See FOO_UNIX_ERRNO).

SUBROUTINE LINK(EXISTING,NEW,ERRNO)
CHARACTER (*) , INTENT (IN) :: EXISTING,NEW
INTEGER (error_kind) ,0PTIONAL, INTENT(QOUT) :: ERRNO

Creates a new link (with name given by NEW) for an existing file (named by EXISTING).

Possible errors include EACCES, EEXIST, EMLINK, ENAMETOOLONG, ENOENT, ENOSPC, ENOTDIR, EPERM, EROFS, EXDEV (see
F90_UNIX_ERRNO).

SUBROUTINE MKDIR(PATH,MODE,ERRNO)

CHARACTER(*) ,INTENT(IN) :: PATH

INTEGER (mode_kind) ,INTENT(IN) :: MODE

INTEGER (error_kind) ,0PTIONAL, INTENT (OUT) :: ERRNO

Creates a new directory with name given by PATH and mode MODE (see F9O_UNIX_FILE for mode values). Note that
any trailing blanks in PATH may be significant.

Possible errors include EACCES, EEXIST, EMLINK, ENAMETOOLONG, ENOENT, ENOSPC, ENOTDIR and EROFS (see
F90_UNIX_ERRNO).

SUBROUTINE MKFIFO(PATH,MODE,ERRNO)

CHARACTER(*) , INTENT(IN) :: PATH

INTEGER (mode_kind) ,INTENT(IN) :: MODE

INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Creates a new FIFO special file with name given by PATH and mode MODE. Note that any trailing blanks in PATH may
be significant.

Possible errors include EACCES, EEXIST, ENAMETOOLONG, ENOENT, ENOSPC, ENOTDIR and EROFS (see FOO_UNIX_ERRNO).

SUBROUTINE RENAME (OLD,NEW,ERRNO)

CHARACTER(*) ,INTENT(IN) :: OLD

CHARACTER (%) ,INTENT(IN) :: NEW

INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Changes the name of the file OLD to NEW. Any existing file NEW is first removed. Note that any trailing blanks in OLD
or NEW may be significant.

Possible errors include EACCES, EBUSY, EEXIST, ENOTEMPTY, EINVAL, EISDIR, ENAMETOOLONG, EMLINK, ENOENT, ENOSPC,
ENOTDIR, EROFS and EXDEV (see F9O_UNIX_ERRNO).

SUBROUTINE RMDIR(PATH,ERRNO)
CHARACTER(*) , INTENT(IN) :: PATH
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: ERRNO

Removes the directory PATH. Note that any trailing blanks in PATH may be significant.

Possible errors include EACCES, EBUSY, EEXIST, ENOTEMPTY, ENAMETOOLONG, ENOENT, ENOTDIR and EROFS (see
F90_UNIX_ERRNO).

Page 57

Modern Fortran API to Posix

SUBROUTINE UMASK(CMASK,PMASK)
INTEGER (mode_kind) ,INTENT(IN) :: CMASK
INTEGER (mode_kind) ,0PTIONAL,INTENT(OUT) :: PMASK

Sets the file mode creation mask of the calling process to CMASK. If PMASK is present it receives the previous value of
the mask.

SUBROUTINE UNLINK(PATH,ERRNO)
CHARACTER(*) ,INTENT(IN) :: PATH
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Deletes the file PATH. Note that any trailing blanks in PATH may be significant.

Possible errors include EACCES, EBUSY, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM and EROFS (see FOO_UNIX_ERRNO).

56 190_unix_dirent

This module contains part of a Fortran API to functions detailed in ISO/TEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The functions in this module are from Section 5.1.2: Directory Operations

Error handling is described in F90_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All the procedures in this module are specific and not generic.

56.1 Procedures

In the description of each procedure, an argument whose KIND is denoted by ‘*’ can accept any kind of that type. Other
KIND indications use the named parameters from the F90_KIND or F90_UNIX_ERRNO modules; these named parameters
are not, however, exported from F90_UNIX_DIRENT.

SUBROUTINE CLOSEDIR(DIRUNIT,ERRNO)
INTEGER (%) , INTENT(IN) :: DIRUNIT
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Close a directory stream that was opened by OPENDIR.

If DIRUNIT does not refer to an open directory stream, error EBADF (see F9O_UNIX_ERRNO) is raised.

SUBROUTINE OPENDIR(DIRNAME,DIRUNIT,ERRNO)
CHARACTER (%) , INTENT(IN) :: DIRNAME

INTEGER () , INTENT (OUT) :: DIRUNIT

INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

Opens a directory stream, returning a handle to it in DIRUNIT.

Possible errors include EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, EMFILE and ENFILE (see FOO_UNIX_ERRNO).

SUBROUTINE READDIR(DIRUNIT,NAME,LENNAME,ERRNO)
INTEGER (*) ,INTENT(IN) :: DIRUNIT

CHARACTER(*) ,INTENT(OUT) :: NAME

INTEGER (int32 or int64),INTENT(OUT) :: LENNAME
INTEGER (error_kind) ,0PTIONAL, INTENT (OUT) :: ERRNO

Page 58

Modern Fortran API to Posix

Reads the first /next directory entry. The name of the file is placed into NAME, blank-padded or truncated as appropriate
if the length of the file name differs from LEN(NAME). The length of the file name is placed in LENNAME.

If there are no more directory entries, NAME is unchanged and LENNAME is negative.

If DIRUNIT is not a directory stream handle produced by OPENDIR, or has been closed by CLOSEDIR, error EBADF (see
F90_UNIX_ERRNO) is raised.

SUBROUTINE REWINDDIR(DIRUNIT,ERRNO)
INTEGER (*) ,INTENT(IN) :: DIRUNIT
INTEGER (error_kind) ,0PTIONAL, INTENT (OUT) :: ERRNO

Rewinds the directory stream so that the next call to READDIR on that stream will return the name of the first file in
the directory.

57 {190_unix_env

This module contains part of a Fortran API to functions detailed in ISO/IEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The functions in this module are from Section 4: Process Environment, plus gethostname from 4.3BSD.

Error handling is described in FOO_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All the procedures in this module are generic; some are also specific (this may change in a future release).

57.1 Parameters

INTEGER(int32) ,PARAMETER :: clock_tick_kind

The integer kind used for clock ticks (see TIMES).

INTEGER(int32) ,PARAMETER :: id_kind

Integer kind for representing IDs; that is, users (uids), groups (gids), process groups (pgids) and processes (pids).
INTEGER(int32) ,PARAMETER :: long_kind

The integer kind corresponding to the C type ‘long’. This is not actually used in this module, but is suitable for use
when declaring a variable to receive a value from SYSCONF.

INTEGER (int32) ,PARAMETER :: sc_stdin_unit, sc_stdout_unit, sc_stderr_unit,
sc_arg_max, sc_child_max, sc_clk_tck, sc_job_control, sc_open_max,
sc_ngroups_max, sc_saved_ids, sc_stream_max, sc_tzname_max, sc_version

Values used as arguments to SYSCONF. The following table describes the returned information from SYSCONF, this is
not the value of the SC_* constant.

SC_STDIN_UNIT
The logical unit number for standard input (READ *,...); this is the same value as INPUT_UNIT in the
standard intrinsic module ISO_FORTRAN_ENV.

SC_STDOUT_UNIT
The logical unit number for standard output (PRINT, WRITE(*,...)); this is the same value as QUTPUT _UNIT
in the standard intrinsic module ISO_FORTRAN_ENV.

Page 59

Modern Fortran API to Posix

SC_STDERR_UNIT
The logical unit number on which errors are reported; this is the same value as ERROR_UNIT in the standard
intrinsic module ISO_FORTRAN_ENV.

SC_ARG_MAX
Maximum length of arguments for the EXEC functions, in bytes, including environment data.

SC_CHILD_MAX
Maximum number of simultaneous processes for a single user.

SC_CLK_TCK
Number of clock ticks per second. (This is the same value returned by the CLK_TCK function).

SC_JOB_CONTROL
Value available only if job control is supported by the operating system.

SC_NGROUPS_MAX
Maximum number of simultaneous supplementary group IDs per process.

SC_OPEN_MAX
Maximum number of files open simultaneously by a single process.

SC_SAVED_IDS
Value available only if each process has a saved set-uid and set-gid.

SC_STREAM_MAX
Maximum number of logical units that can be simultaneously open. Not always available.

SC_TZNAME_MAX
Maximum number of characters for the name of a time zone.

SC_VERSION
Posix version number. This will be 199009 if the underlying operating system’s C interface conforms to
ISO/TEC 9945-1:1990.

INTEGER(int32) ,PARAMETER :: time_kind

The integer kind used for holding date/time values (see TIME).

57.2 Types

TYPE tms
INTEGER(clock_tick_kind) utime, stime, cutime, cstime
END TYPE

Derived type holding CPU usage time in clock ticks. UTIME and STIME contain CPU time information for a process,
CUTIME and CSTIME contain CPU time information for its terminated child processes. In each case this is divided into
user time (UTIME, CUTIME) and system time (STIME, CSTIME).

TYPE utsname

CHARACTER(...) sysname, nodename, release, version, machine
END TYPE

Derived type holding data returned by UNAME. Note that the character length of each component is fixed, but may be
different on different systems. The values in these components are blank-padded (if short) or truncated (if long). For
further information see ISO/IEC 9945-1:1990.

Page 60

Modern Fortran API to Posix

57.3 Procedures

PURE INTEGER(KIND=clock_tick_kind) FUNCTION clk_tck()
Returns the number of clock ticks in one second of CPU time (see TIMES).

PURE SUBROUTINE ctermid(s,lens)
CHARACTER(*) ,0PTIONAL, INTENT(OUT) :: s
INTEGER(int32) ,0PTIONAL,INTENT(OUT) :: lens

If present, S is set to the filename of the controlling terminal. If present, LENS is set to the length of the filename of
the controlling terminal. If S is longer than the filename of the controlling terminal it is padded with blanks; if S is
shorter it is truncated — it is the user’s responsibility to check the value of LENS to detect such truncation.

If the filename of the controlling terminal cannot be determined for any reason LENS (if present) will be set to zero
and S (if present) will be blank.

SUBROUTINE getarg(k,arg,lenarg,errno)
INTEGER (*) ,INTENT(IN) :: k
CHARACTER (*) ,0PTIONAL,INTENT(OUT) :: arg
INTEGER (int32) ,0PTIONAL, INTENT(OUT) :: lenarg
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Accesses command-line argument number K, where argument zero is the program name. If ARG is present, it receives
the argument text (blank-padded or truncated as appropriate if the length of the argument differs from that of ARG).
If LENARG is present, it receives the length of the argument. If ERRNO is present, it receives the error status.

Note that if K is less than zero or greater than the number of arguments (returned by IARGC) error EINVAL (see
F90_UNIX_ERRNO) is raised.

This procedure is very similar to the standard intrinsic procedure GET_COMMAND _ARGUMENT.
PURE INTEGER(id_kind) FUNCTION getegid()
Returns the effective group number of the calling process.

SUBROUTINE getenv(name,value,lenvalue,errno)
CHARACTER (*) ,INTENT(IN) :: name
CHARACTER (%) ,0PTIONAL,INTENT(OUT) :: value
INTEGER (int32) ,0PTIONAL,INTENT (OUT) :: lenvalue
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Accesses the environment variable named by NAME. If VALUE is present, it receives the text value of the variable (blank-
padded or truncated as appropriate if the length of the value differs from that of VALUE). If LENVALUE is present, it
receives the length of the value. If ERRNO is present, it receives the error status.

If there is no such variable, error EINVAL (see FOO_UNIX_ERRNO) is raised. Other possible errors include ENOMEM.
PURE INTEGER(id_kind) FUNCTION geteuid()

Returns the effective user number of the calling process.

PURE INTEGER(id_kind) FUNCTION getgid()

Returns the group number of the calling process.

Page 61

Modern Fortran API to Posix

SUBROUTINE getgroups(grouplist,ngroups,errno)
INTEGER (id_kind) ,0PTIONAL,INTENT(OUT) :: grouplist(:)
INTEGER(int32) ,0PTIONAL,INTENT(OUT) :: ngroups
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Retrieves supplementary group number information for the calling process. If GROUPLIST is present, it is filled with
the supplementary group numbers. If NGROUPS is present, it receives the number of supplementary group numbers. If
ERRNO is present, it receives the error status.

If GROUPLIST is present but too small to contain the complete list of supplementary group numbers, error EINVAL
(see FOO_UNIX_ERRNO) is raised. The maximum number of supplementary group numbers can be found using SYSCONF
(enquiry SC_NGROUPS_MAX); alternatively, ‘CALL GETGROUPS (NGROUPS=N)’ will reliably return the actual number in use.

PURE SUBROUTINE gethostname (name,lenname)
CHARACTER (*) ,0PTIONAL,INTENT(OUT) :: name
INTEGER (int32) ,0PTIONAL,INTENT(QOUT) :: lenname

This provides the functionality of 4.3BSD’s gethostname. If NAME is present it receives the text of the standard host
name for the current processor, blank-padded or truncated if appropriate. If LENNAME is present it receives the length
of the host name. If no host name is available LENNAME will be zero.

PURE SUBROUTINE getlogin(s,lens)
CHARACTER(*) ,0PTIONAL,INTENT(OUT) :: s
INTEGER (int32) ,0PTIONAL,INTENT(OUT) :: lens

Accesses the user name (login name) associated with the calling process. If S is present, it receives the text of the
name (blank-padded or truncated as appropriate if the length of the login name differs from that of 8). If LENS is
present, it receives the length of the login name.

PURE INTEGER(id_kind) FUNCTION getpgrp()

Returns the process group number of the calling process.

PURE INTEGER(id_kind) FUNCTION getpid()

Returns the process number of the calling process.

PURE INTEGER(id_kind) FUNCTION getppid()

Returns the process number of the parent of the calling process.
PURE INTEGER(id_kind) FUNCTION getuid()

Returns the user number of the calling process.

PURE INTEGER(int32) FUNCTION iargc()

Returns the number of command-line arguments; this is the same value as the intrinsic function
COMMAND_ARGUMENT_COUNT, except that it returns -1 if even the program name is unavailable (the intrinsic function
erroneously returns the same value, 0, whether the program name is available or not).

SUBROUTINE isatty(lunit,answer,errno)
INTEGER () , INTENT(IN) :: lunit
LOGICAL(*) ,INTENT(OUT) :: answer
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Page 62

Modern Fortran API to Posix

ANSWER receives the value .TRUE. if and only if the logical unit identified by LUNIT is connected to a terminal.

If LUNIT is not a valid unit number or is not connected to any file, error EBADF (see F90_UNIX_ERRNO) is raised.

SUBROUTINE setgid(gid,errno)
INTEGER (*) ,INTENT(IN) :: gid
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Sets the group number of the calling process to GID. For full details refer to section 4.2.2 of ISO/IEC 9945-1:1990.

If GID is not a valid group number, error EINVAL (see F9O_UNIX_ERRNO) is raised. If the process is not allowed to set
the group number to GID, error EPERM is raised.

SUBROUTINE setpgid(pid,pgid,errno)
INTEGER(*) ,INTENT(IN) :: pid, pgid
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Sets the process group number of process PID (or, if PID is zero, the calling process) to PGID. For full details refer to
section 4.3.3 of ISO/IEC 9945-1:1990.

Possible errors include EACCES, EINVAL, ENOSYS, EPERM, ESRCH (see F9O_UNIX_ERRNO).

SUBROUTINE setsid(sid,errno)
INTEGER(id_kind) ,0PTIONAL, INTENT(OUT) :: sid
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Creates a session and sets the process group number of the calling process. For full details refer to section 4.3.2 of
ISO/TEC 9945-1:1990. If SID is present it receives the new session id (equal to the process id); if an error occurs it
receives -1.

Possible errors include EPERM (see FOO_UNIX_ERRNO).

SUBROUTINE setuid(uid,errno)
INTEGER (%) , INTENT(IN) :: uid
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Sets the user number of the calling process to UID. For full details refer to section 4.2.2 of ISO/IEC 9945-1:1990.

If UID is not a valid group number, error EINVAL (see F9O_UNIX_ERRNO) is raised. If the process is not allowed to set
the user number to UID, error EPERM is raised.

SUBROUTINE sysconf (name,val,errno)
INTEGER (%) ,INTENT(IN) :: name
INTEGER (*) ,INTENT(OUT) :: val
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Returns the value of a system configuration variable. The variables are named by integer PARAMETERS defined in
this module, and are described in the Parameters section.

If NAME is not a valid configuration variable name, error EINVAL (see FOO_UNIX_ERRNO) is raised. If VAL is too small an
integer kind to contain the result, error ERANGE is raised; kind LONG_KIND is guaranteed to be big enough for all values.

SUBROUTINE time(itime,errno)
INTEGER (time_kind) , INTENT(OUT) :: itime
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

ITIME receives the operating system date/time in seconds since the Epoch.

Page 63

Modern Fortran API to Posix

INTEGER(KIND=clock_tick_kind) FUNCTION times(buffer)
TYPE(tms) ,INTENT(OUT) :: buffer

This function returns the elapsed real time in clock ticks since an arbitrary point in the past, or -1 if the function is
unavailable. BUFFER is filled in with CPU time information for the calling process and any terminated child processes.

If this function returns zero the values in BUFFER will still be correct but the elapsed-time timer was not available.

SUBROUTINE ttyname(lunit,s,lens,errno)
INTEGER(*) ,INTENT(IN) :: lunit
CHARACTER (*) ,0PTIONAL,INTENT(OUT) :: s
INTEGER (int32) ,0PTIONAL,INTENT(OUT) :: lens
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: errno

Accesses the name of the terminal connected to the logical unit identified by LUNIT. If S is present, it receives the text
of the terminal name (blank-padded or truncated as appropriate, if the length of the terminal name differs from that
of S). If LENS is present, it receives the length of the terminal name. If ERRNO is present, it receives the error status.

If LUNIT is not a valid logical unit number, or is not connected, error EBADF (see FOO_UNIX_ERRNO) is raised; otherwise,
if the function is not available, ENOSYS is raised, or if LUNIT is not connected to a terminal, error ENOTTY is raised.

SUBROUTINE uname (name,errno)
TYPE (UTSNAME) , INTENT (OUT) :: name
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: errno

Returns information about the operating system in NAME.

58 f90_unix_errno

This module contains part of a Fortran APT to functions detailed in ISO/TEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The facilities in this module are from Section 2.4 Error Numbers.

58.1 Error Handling

Many procedures provided by the FO0_UNIX_* modules have an optional ERRNO argument, declared as
INTEGER (error_kind) ,0PTIONAL, INTENT (OUT)

If this argument is provided it receives the error status from the procedure; zero indicates successful completion,
otherwise it will be a non-zero error code, usually one of the ones listed in this module.

If the ERRNO argument is omitted and an error condition is raised, the program will be terminated with an informative
error message.

If a procedure has no ERRNO argument it indicates that no error condition is possible - the procedure always succeeds.

58.2 Parameters

All parameters are of type INTEGER with kind ERROR_KIND. The following table lists the error message typically
associated with each error code; for full details see ISO/IEC 9945-1:1990, either section 2.4 or the appropriate section
for the function raising the error.

Page 64

Modern Fortran API to Posix

E2BIG Arg list too long

EACCES Permission denied

EAGAIN Resource temporarily unavailable
EBADF Bad file descriptor

EBUSY Resource busy

ECHILD No child process

EDEADLK Resource deadlock avoided
EDOM Domain error

EEXIST File exists

EFAULT Bad address

EFBIG File too large

EINTR Interrupted function call
EINVAL Invalid argument

EIO Input/Output error
EISDIR Is a directory

EMFILE Too many open files
EMLINK Too many links
ENAMETOOLONG Filename too long

ENFILE Too many open files in system
ENODEV No such device

ENOENT No such file or directory
ENOEXEC Exec format error

ENOLCK No locks available

ENOMEM Not enough space

ENOSPC No space left on device
ENOSYS Function not implemented
ENOTDIR Not a directory
ENOTEMPTY Directory not empty
ENOTTY Inappropriate I/O control operation
ENXIO No such device or address
EPERM Operation not permitted
EPIPE Broken pipe

ERANGE Result too large

EROFS Read-only file system
ESPIPE Invalid seek

ESRCH No such process

EXDEV Improper link

59 190 _unix file

This module contains part of a Fortran API to functions detailed in ISO/TEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The functions in this module are from Section 5.6 File Characteristics.

Error handling is described in FOO_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All the procedures in this module are generic; some may be specific but this is subject to change in a future release.

59.1 Parameters

INTEGER (int32) ,PARAMETER :: F_0K
Flag for requesting file existence check (see ACCESS).
USE FOO_UNIX_ENV,ONLY:ID_KIND

Page 65

Modern Fortran API to Posix

See FO90_UNIX_ENV for a description of this parameter.

USE F90_UNIX_DIR,ONLY:MODE_KIND

See FOO_UNIX DIR for a description of this parameter.

INTEGER(int32) ,PARAMETER :: R_OK

Flag for requesting file readability check (see ACCESS).

INTEGER (MODE_KIND) ,PARAMETER :: S_IRGRP

File mode bit indicating group read permission (see STAT_T).

INTEGER (MODE_KIND) ,PARAMETER :: S_IROTH

File mode bit indicating other read permission (see STAT_T).

INTEGER (MODE_KIND) ,PARAMETER :: S_IRUSR

File mode bit indicating user read permission (see STAT_T).

INTEGER (MODE_KIND) ,PARAMETER :: S_IRWXG

Mask to select the group accessibility bits from a file mode (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IRWXO

Mask to select the other accessibility bits from a file mode (see STAT.T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IRWXU

Mask to select the user accessibility bits from a file mode (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_ISGID

File mode bit indicating that the file is set-group-ID (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_ISUID

File mode bit indicating that the file is set-user-ID (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IWGRP

File mode bit indicating group write permission (see STAT_T).

INTEGER (MODE_KIND) ,PARAMETER :: S_IWOTH

File mode bit indicating other write permission (see STAT.T).

Page 66

Modern Fortran API to Posix

INTEGER (MODE_KIND) ,PARAMETER :: S_IWUSR

File mode bit indicating user write permission (see STAT.T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IXGRP

File mode bit indicating group execute permission (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IXOTH

File mode bit indicating other execute permission (see STAT_T).
INTEGER (MODE_KIND) ,PARAMETER :: S_IXUSR

File mode bit indicating user execute permission (see STAT_T).
USE FO9O_UNIX_ENV,ONLY :: TIME_KIND

See FOO_UNIX_ENV for a description of this parameter.

INTEGER (int32) ,PARAMETER :: W_0K

Flag for requesting file writability check (see ACCESS).
INTEGER(int32) ,PARAMETER :: X_0K

Flag for requesting file executability check (see ACCESS).

59.2 Types

TYPE stat_t

INTEGER (MODE_KIND) st_mode

INTEGER(...) st_ino

INTEGER(...) st_dev

INTEGER(...) st_nlink

INTEGER(id_kind) st_uid

INTEGER(id_kind) st_gid

INTEGER(...) st_size

INTEGER(TIME_KIND) st_atime, st_mtime, st_ctime
END TYPE

Derived type holding file characteristics.

ST_MODE File mode (read/write/execute permission for user/group/other, plus set-group-ID and set-user-ID bits).
ST_INO File serial number.

STDEV ID for the device on which the file resides.

ST_NLINK The number of links (see F90_UNIX DIR, LINK operation) to the file.

STUID User number of the file’s owner.

ST_GID Group number of the file.

Page 67

Modern Fortran API to Posix

ST_SIZE File size in bytes (regular files only).
ST_ATIME Time of last access.
ST MTIME Time of last modification.

ST CTIME Time of last file status change.

TYPE UTIMBUF
INTEGER(time_kind) actime, modtime
END TYPE

Data type holding time values for communication to UTIME. ACTIME is the new value for ST_ATIME, MODTIME is the new
value for ST MTIME.

59.3 Procedures

PURE SUBROUTINE access(path,amode,errno)
CHARACTER (*) ,INTENT(IN) :: path
INTEGER (%) ,INTENT(IN) :: amode
INTEGER (error_kind) ,INTENT (QUT) :: errno

Checks file accessibility according to the value of AMODE; this should be F_0K or a combination of R_0K, W_0K and X_OK.
In the latter case the values may be combined by addition or the intrinsic function IOR.

The result of the accessibility check is returned in ERRNO, which receives zero for success (i.e. the file exists for F_0K, or
all the accesses requested by the R_0K et al combination are allowed) or an error code indicating the reason for access
rejection. Possible rejection codes include EACCES, ENAMETOOLONG, ENOENT, ENOTDIR and EROFS (see F9O_UNIX_ERRNO).

If the value of AMODE is invalid, error EINVAL is returned.
Note that most ACCESS enquiries are equivalent to an INQUIRE statement, in particular:
CALL ACCESS(PATH,F_OK,ERRNO)

returns success (ERRNO==0) if and only if
INQUIRE(FILE=PATH,EXIST=LVAR) would set LVAR to .TRUE.;

CALL ACCESS(PATH,R_OK,ERRNO)
returns success (ERRNO==0) if and only if
INQUIRE(FILE=PATH,READ=CHVAR) would set CHVAR to ’YES’;

CALL ACCESS(PATH,W_OK,ERRNO)
returns success (ERRN0==0) if and only if
INQUIRE(FILE=PATH,WRITE=CHVAR) would set CHVAR to ’YES’;

CALL ACCESS(PATH,IOR(W_OK,R_OK),ERRNO)
returns success (ERRNO==0) if and only if
INQUIRE(FILE=PATH,READWRITE=CHVAR) would set CHVAR to ’YES’.

The only differences being that ACCESS returns a reason for rejection, and can test file executability.

SUBROUTINE CHMOD(PATH,MODE,ERRNO)
CHARACTER(*) ,INTENT(IN) :: PATH
INTEGER (*) ,INTENT(IN) :: MODE
INTEGER (error_kind) ,0PTIONAL, INTENT(QUT) :: ERRNO

Sets the file mode (ST-MODE) to MODE.

Possible errors include EACCES, ENAMETOOLONG, ENOTDIR, EPERM and EROFS (see FOO_UNIX_ERRNO).

Page 68

Modern Fortran API to Posix

SUBROUTINE CHOWN (PATH,OWNER,GROUP,ERRNO)
CHARACTER(*) ,INTENT(IN) :: PATH
INTEGER (id_kind) ,INTENT(IN) :: OWNER, GROUP
INTEGER (error_kind) ,0PTIONAL,INTENT(QUT) :: ERRNO

Changes the owner (ST_UID) of file PATH to OWNER, and the group number (ST_GID) of the file to GROUP.

Possible errors include EACCES, EINVAL, ENAMETOOLONG, ENOTDIR, ENOENT, EPERM and EROFS (see F9O_UNIX_ERRNO).

SUBROUTINE FSTAT(LUNIT,BUF,ERRNO)
INTEGER (%) , INTENT(IN) :: LUNIT
TYPE(stat_t) , INTENT(OUT) :: BUF
INTEGER (error_kind) ,0PTIONAL, INTENT(QOUT) :: ERRNO

BUF receives the characteristics of the file connected to logical unit LUNIT.

If LUNIT is not a valid logical unit number or is not connected to a file, error EBADF is raised (see F90_UNIX_ERRNO).

PURE LOGICAL(word) FUNCTION isblk(mode)
INTEGER (mode_kind) , INTENT (IN) :: mode

Returns .TRUE. if and only if the MODE value indicates that the file is a “block device”.

PURE LOGICAL(word) FUNCTION ischr(mode)
INTEGER (mode_kind) ,INTENT(IN) :: mode

Returns .TRUE. if and only if the MODE value indicates that the file is a “character device”.

PURE LOGICAL(word) FUNCTION isdir(mode)
INTEGER (mode_kind) ,INTENT (IN) :: mode

Returns .TRUE. if and only if the MODE value indicates that the file is a directory (or folder).

PURE LOGICAL(word) FUNCTION isfifo(mode)
INTEGER (mode_kind) ,INTENT(IN) :: mode

Returns .TRUE. if and only if the MODE value indicates that the file is a “FIFO” (named or unnamed pipe).

PURE LOGICAL(word) FUNCTION isreg(mode)
INTEGER (mode_kind) ,INTENT(IN) :: mode

Returns .TRUE. if and only if the MODE value indicates that the file is a “regular” (i.e. normal) file.

SUBROUTINE STAT (PATH,BUF,ERRNO)
CHARACTER (%) , INTENT(IN) :: PATH
TYPE(stat_t) , INTENT(OUT) :: BUF
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: ERRNO

BUF receives the characteristics of the file PATH.

Possible errors include EACCES, ENAMETOOLONG, ENOENT and ENOTDIR (see F9O_UNIX_ERRNO).

Page 69

Modern Fortran API to Posix

SUBROUTINE utime(path,times,errno)
CHARACTER (%) ,INTENT(IN) :: path
TYPE (utimbuf) ,0PTIONAL, INTENT(IN) :: times
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Set the access and modification times of the file named by PATH to those specified by the ACTIME and MODTIME
components of TIMES respectively.

Possible errors include EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, EPERM and EROFS (see F9O_UNIX_ERRNO).

60 190 _unix_ io

This module will contain part of a Fortran API to functions detailed in ISO/IEC 9945-1:1990 Portable Operating
System Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

In this release only the FLUSH procedure is supported. Users are advised to use the ONLY clause when using this
module, as it will have further names added in later releases.

Error handling is described in FOO_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All procedures in this module are generic and may also be specific (this may change in a future release).

60.1 Procedures

SUBROUTINE FLUSH(LUNIT,ERRNO)
INTEGER(*) ,INTENT(IN) :: LUNIT
INTEGER (ERROR_KIND) ,0PTIONAL, INTENT(OUT) :: ERRNO

Flushes the output buffer of logical unit LUNIT. The effect is similar to the Fortran 2003 FLUSH statement, except that
the statement allows flushing a unit which is not connected but the procedure does not.

If LUNIT is not a valid unit number or is not connected to a file, error EBADF is raised (see F90_UNIX_ERRNO).

61 f90_unix_proc

This module contains part of a Fortran API to functions detailed in ISO/TEC 9945-1:1990 Portable Operating System
Interface (POSIX) - Part 1: System Application Program Interface (API) [C Language].

The functions in this module are from Section 3: Process Primitives, excluding 3.3 Signals. The C language functions
abort, atexit, exit and system are also provided by this module.

Error handling is described in F90_UNIX_ERRNO. Note that for procedures with an optional ERRNO argument, if an error
occurs and ERRNO is not present, the program will be terminated.

All the procedures in this module are generic; some may be specific but this is subject to change in a future release.
61.1 Parameters

INTEGER(int32) ,PARAMETER :: atomic_int

Integer kind for “atomic” operations in signal handlers (see ALARM).

INTEGER(int32) ,PARAMETER :: atomic_log

Page 70

Modern Fortran API to Posix

Logical kind for “atomic” operations in signal handlers (see ALARM).

USE f90_unix_env, ONLY: pid_kind=>id_kind

Integer kind for representing process IDs; this has been superseded by ID_KIND from F90_UNIX_ENV.

USE f90_unix_env, ONLY: time_kind

Integer kind for representing times in seconds.

INTEGER(int32) ,PARAMETER :: wnohang

Option bit for WAITPID indicating that the calling process should not wait for the child process to stop or exit.
INTEGER (int32) ,PARAMETER :: wuntraced

Option bit for WAITPID indicating that status should be returned for stopped processes as well as terminated ones.

61.2 Procedures

SUBROUTINE abort (message)
CHARACTER(*) ,0PTIONAL :: message

ABORT cleans up the i/o buffers and then terminates execution, producing a core dump on Unix systems. If MESSAGE
is given it is written to logical unit 0 (zero) preceded by ¢ abort:’.

SUBROUTINE alarm(seconds,subroutine,secleft,errno)
INTEGER(*) ,INTENT(IN) :: seconds
INTERFACE
SUBROUTINE subroutine()
END
END INTERFACE
OPTIONAL subroutine
INTEGER (time_kind) ,0PTIONAL,INTENT (OUT) :: secleft
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Establishes an “alarm” call to the procedure SUBROUTINE to occur after SECONDS seconds have passed, or cancels an
existing alarm if SECONDS==(. If SUBROUTINE is not present, any previous association of a subroutine with the alarm
signal is left unchanged. If SECLEFT is present, it receives the number of seconds that were left on the preceding alarm
or zero if there were no existing alarm.

The subroutine invoked by the alarm call is only permitted to define VOLATILE SAVEd variables that have the type
INTEGER (atomic_int) or LOGICAL (atomic_log); defining or referencing any other kind of variable may result in
unpredictable behaviour, even program termination. Furthermore, it shall not perform any array or CHARACTER
operations, input/output, or invoke any intrinsic function or module procedure.

If an alarm call is established with no handler (i.e. SUBROUTINE was not present on the first call) the process may be
terminated when the alarm goes off.

Possible errors include ENOSYS.

SUBROUTINE atexit (subroutine,errno)
INTERFACE
SUBROUTINE subroutine()
END
END INTERFACE
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Page 71

Modern Fortran API to Posix

Registers an argumentless subroutine for execution on normal termination of the program.

If the program terminates normally, all subroutines registered with ATEXIT will be invoked in reverse order of their reg-
istration. Normal termination includes using the F90_UNIX_PROC procedure EXIT, executing a Fortran STOP statement
or executing a main program END statement. ATEXIT subroutines are invoked before automatic file closure.

If the program terminates due to an error or by using the FOO_UNIX_PROC procedure FASTEXIT, these subroutines will
not be invoked.

Possible errors include ENOMEM.

Note: The list of ATEXIT procedures registered via Fortran is separate from those registered via C; the latter will be
invoked after all files have been closed.

SUBROUTINE execl(path,arg0...,errno)
CHARACTER(*) ,INTENT(IN) :: path
CHARACTER(*) ,INTENT(IN) :: argO...
INTEGER (error_kind) ,0PTIONAL,INTENT(OUT) :: errno

Executes a file instead of the current image, like EXECV. The arguments to the new program are specified by the
dummy arguments which are named ARGO, ARG1, etc. up to ARG20 (additional arguments may be provided in later
releases). Note that these are not optional arguments, any actual argument that is itself an optional dummy argument
must be present. This function is the same as EXECV except that the arguments are provided individually instead of
via an array; and because they are provided individually, there is no need to provide the lengths (the lengths being
taken from each argument itself).

Errors are the same as for EXECV.

SUBROUTINE execlp(file,arguments, ,errno)
CHARACTER (%) ,INTENT(IN) :: file
CHARACTER(*) ,INTENT (IN) :: arguments
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Executes a file instead of the current image, like EXECV. The arguments to the new program are specified by the dummy
arguments which are named ARGO, ARG1, etc. up to ARG20 (additional arguments may be provided in later releases).
Note that these are not optional arguments, any actual argument that is itself an optional dummy argument must be
present. This function is the same as EXECL except that determination of the program to be executed follows the same
rules as EXECVP.

Errors are the same as for EXECV.

SUBROUTINE execv(path,argv,lenargv,errno)
CHARACTER (*) ,INTENT(IN) :: path
CHARACTER (*) ,INTENT(IN) :: argv(:)
INTEGER(*) ,INTENT(IN) :: lenargv(:)
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Executes the file PATH in place of the current process image; for full details see ISO/IEC 9945-1:1990 section 3.1.2. ARGV
is the array of argument strings, LENARGV containing the desired length of each argument. If ARGV is not zero-sized,
ARGV (1) (:LENARGV (1)) is passed as argument zero (i.e. the program name).

If LENARGV is not the same shape as ARGV, error EINVAL is raised (see F90_UNIX_ERRNO). Other possible errors include
E2BIG, EACCES, ENAMETOOLONG, ENOENT, ENOTDIR, ENOEXEC and ENOMEM.

SUBROUTINE EXECVE(path,argv,lenargv,env,lenenv,errno)
CHARACTER(*) ,INTENT(IN) :: path
CHARACTER(*) ,INTENT(IN) :: argv(:)
INTEGER (*) ,INTENT(IN) :: lenargv(:)
CHARACTER (*) ,INTENT(IN) :: env(:)
INTEGER (*) ,INTENT(IN) :: lenenv(:)
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Page 72

Modern Fortran API to Posix

Similar to EXECV, with the environment strings specified by ENV and LENENV being passed to the new program; for full
details see ISO/TEC 9945-1:1990 section 3.1.2.

If LENARGV is not the same shape as ARGV or LENENV is not the same shape as ENV, error EINVAL is raised (see
FOO_UNIX_ERRNO). Other errors are the same as for EXECV.

SUBROUTINE execvp(file,argv,lenargv,errno)
CHARACTER (%) ,INTENT(IN) :: file
CHARACTER (%) , INTENT(IN) :: argv(:)
INTEGER (*) ,INTENT(IN) :: lenargv(:)
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

The same as EXECV except that the program to be executed, FILE, is searched for using the PATH environment variable
(unless it contains a slash character, in which case EXECVP is identical in effect to EXECV).

Errors are the same as for EXECV.

SUBROUTINE exit(status)
INTEGER (int32) ,0PTIONAL,INTENT(IN) :: status

Terminate execution as if executing the END statement of the main program (or an unadorned STOP statement). If
STATUS is given it is returned to the operating system (where applicable) as the execution status code.

SUBROUTINE fastexit(status)
INTEGER,OPTIONAL,INTENT(IN) :: status

This provides the functionality of ISO/IEC 9945-1:1990 function _exit (section 3.2.2). There are two main differences
between FASTEXIT and EXIT:

1. When EXIT is called all open logical units are closed (as if by a CLOSE statement). With FASTEXIT this is not
done, nor are any file buffers flushed, thus the contents and status of any file connected at the time of calling
FASTEXIT are undefined.

2. Subroutines registered with ATEXIT are not executed.

SUBROUTINE fork(pid,errno)
INTEGER (id_kind) , INTENT(OUT) :: pid
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Creates a new process which is an exact copy of the calling process. In the new process, the value returned in PID is

zero; in the calling process the value returned in PID is the process ID of the new (child) process.

Possible errors include EAGAIN, ENOMEM and ENOSYS (see FOO_UNIX_ERRNO).

SUBROUTINE pause(errno)
INTEGER (error_kind) ,INTENT(OUT) :: errno

Suspends process execution until a signal is raised. If the action of the signal was to terminate the process, the process
is terminated without returning from PAUSE. If the action of the signal was to invoke a signal handler (e.g. via ALARM),
process execution continues after return from the signal handler.

If process execution is continued after a signal, ERRNO is set to EINTR.

If this functionality is not available, ERRNO is set to ENOSYS.

PURE SUBROUTINE sleep(seconds,secleft)
INTEGER (*) ,INTENT(IN) :: seconds
INTEGER (time_kind) ,0PTIONAL,INTENT(OUT) :: secleft

Page 73

Modern Fortran API to Posix

Suspends process execution for SECONDS seconds, or until a signal has been delivered. If SECLEFT is present, it receives
the number of seconds remaining in the sleep time (zero unless the sleep was interrupted by a signal).

SUBROUTINE system(string,status,errno)
CHARACTER(*) ,INTENT(IN) :: string
INTEGER (error_kind) ,0PTIONAL, INTENT(OUT) :: status,errno

Passes STRING to the command processor for execution. If STATUS is present it receives the completion status -
this is the same status returned by WAIT and can be decoded with WIFEXITED etc. If ERRNO is present it receives
the error status from the SYSTEM call itself.

Possible errors are those from FORK or EXECV.

SUBROUTINE wait(status,retpid,errno)
INTEGER (int32) ,0PTIONAL,INTENT (OUT) :: status
INTEGER (id_kind) ,0PTIONAL,INTENT(OUT) :: retpid
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Wait for any child process to terminate (returns immediately if one has already terminated). See ISO/IEC 9945-1:1990
section 3.2.1 for full details.

If STATUS is present it receives the termination status of the child process. If RETPID is present it receives the process
number of the child process.

Possible errors include ECHILD and EINTR (see F90_UNIX_ERRNO).

SUBROUTINE waitpid(pid,status,options,retpid,errno)
INTEGER(id_kind) ,INTENT(IN) :: pid
INTEGER(int32) ,0PTIONAL,INTENT (OUT) :: status
INTEGER (int32) ,0PTIONAL,INTENT(IN) :: options
INTEGER (id_kind) ,0PTIONAL, INTENT(OUT) :: retpid
INTEGER (error_kind) ,0PTIONAL,INTENT (OUT) :: errno

Wait for a particular child process to terminate (or for any one if PID==(-1)). If OPTIONS is not present it is as if it
were present with a value of 0. See ISO/TEC 9945-1:1990 section 3.2.1 for full details.

Possible errors include ECHILD, EINTR and EINVAL (see FOO_UNIX_ERRNO).

PURE INTEGER(int32) FUNCTION wexitstatus(stat_val)
INTEGER(int32) ,INTENT(IN) :: stat_val

If WIFEXITED(STAT_VAL) is .TRUE., this function returns the low-order 8 bits of the status value supplied to EXIT or
FASTEXIT by the child process. If the child process executed a STOP statement or main program END statement, the
value will be zero. If WIFEXITED (STAT_VAL) is .FALSE., the function value is undefined.

PURE LOGICAL(word) FUNCTION wifexited(stat_val)
INTEGER (error_kind) ,INTENT(IN) :: stat_val

Returns .TRUE. if and only if the child process terminated by calling FASTEXIT, EXIT, by executing a STOP statement
or main program END statement, or possibly by some means other than Fortran.

PURE LOGICAL(word) FUNCTION wifsignaled(stat_val)
INTEGER (int32) , INTENT(IN) :: stat_val

Returns .TRUE. if and only if the child process terminated by receiving a signal that was not caught.

Page 74

Modern Fortran API to Posix

PURE LOGICAL(word) FUNCTION wifstopped(stat_val)
INTEGER (int32) , INTENT(IN) :: stat_val

Returns .TRUE. if and only if the child process is stopped (and not terminated). Note that WAITPID must have been
used with the WUNTRACED option to receive such a status value.

PURE INTEGER(int32) FUNCTION wstopsig(stat_val)
INTEGER(int32) ,INTENT(IN) :: stat_val

If WIFSTOPPED (STAT_VAL) is .TRUE., this function returns the signal number that caused the child process to stop. If
WIFSTOPPED (STAT_VAL) is .FALSE., the function value is undefined.

PURE INTEGER(int32) FUNCTION wtermsig(stat_val)
INTEGER (int32) , INTENT(IN) :: stat_val

If WIFSIGNALED (STAT_VAL) is .TRUE., this function returns the signal number that caused the child process to termi-
nate. If WIFSIGNALED (STAT_VAL) is .FALSE., the function value is undefined.

Page 75

Standard Fortran 95

62 Fortran 95 Program Structure

This section contains a quick reference guide to the structure of a Fortran 95 program.

Expressions are described in the next section.

)

e Syntax element definition is represented by ‘::=’.
e Names in italics (e.g., ‘expr’) are syntax element names.

e Items in ‘[|’ are optional.

e Ellipsis ‘...” indicates optional repetition of the preceding item.
e ‘{’ and ‘} are for grouping only.

e Items separated by ‘|’ are a “one-of-many” selection.

e Statements end in ‘-stmt’ and are described in the section “Fortran 95 Statements”.

INCLUDE Line

The INCLUDE line has the form:
INCLUDE char-literal-constant

The char-literal-constant must not have a kind-param and must be the pathname of an accessible file; relative path-
names will be searched for in the current working directory and all directories named by —I options. The INCLUDE
line is effectively replaced by the contents of the named file.

Program Unit Structure

program-unit ::= main-program | module | procedure | block-data-subprogram
main-program = | program-stmt |
body

end-program-stmt

body ::= declaration-section
[executable-section |
[contains-section]

Note: A contains-section cannot appear in an internal procedure (an internal procedure is a procedure in
the contains-section of another procedure).

contains-section ::= contains-stmt
procedure...
module ::= module-stmt

[declaration-section]
[contains-section |
end-module-stmt

procedure == function-subprogram | subroutine-subprogram

Page 76

Standard Fortran 95

function-subprogram ::= function-stmt
body
end-function-stmt
subroutine-subprogram ::= subroutine-stmt
body

end-subroutine-stmt

block-data-subprogram ::= block-data-stmt
declaration-section
end-block-data-stmt

Declaration Section

declaration-section ::= [use-stmt... |

[implicit-part...]

[declaration... |
implicit-part ::= implicit-stmt | parameter-stmt | format-stmt | entry-stmt
declaration ::= deriwed-type-definition | interface-block | declarative |

format-stmt | entry-stmt

declarative ::= allocatable-stmt | common-stmt | data-stmt | dimension-stmt |
equivalence-stmt | external-stmt | intent-stmt | intrinsic-stmt | namelist-stmt |
optional-stmt | parameter-stmt | pointer-stmt | private-stmt | public-stmt |
save-stmt | statement-function-stmt | target-stmt | type-declaration-stmt

derived-type-definition ::= type-stmt
component-def-stmt...
end-type-stmt

interface-block ::= interface-stmt
{ interface-body | module-procedure-stmt } ...
end-interface-stmt

interface-body ::= function-stmt declaration-section end-function-stmt |
subroutine-stmt declaration-section end-subroutine-stmt

Executable Section

executable-section ::= [executable | executable-construct | data-stmt |...

executable ::= allocate-stmt | arithmetic-if-stmt | assignment-stmt | backspace-stmt | call-stmt |
close-stmt | computed-goto-stmt | continue-stmt | cycle-stmt | deallocate-stmt
| endfile-stmt | exit-stmt | forall-stmt | goto-stmt | if-stmt | inquire-stmt |
nullify-stmt | open-stmt | pause-stmt | pointer-assignment-stmt | print-stmt |
read-stmt | return-stmt | rewind-stmt | stop-stmt | where-stmt | write-stmt

executable-construct ::= select-case-construct | do-loop | forall-construct | if-construct |
where-construct

select-case-construct ::= select-stmt
[case-stmt executable-section | ...
end-select-stmt

if-construct ::= if-then-stmt
[executable-section]
[elseif-stmt executable-section | ...
[else-stmt executable-section |
endif-stmt

Page 77

Standard Fortran 95

where-construct ::= where-construct-stmt
where-body
[elsewhere-stmt where-body |
endwhere-stmt
where-body ::= [where-assignment-stmt | where-stmt | where-construct |
elsewhere-mask-stmt | ...

forall-construct ::== forall-construct-stmt
forall-body
end-forall-stmt
forall-body ::= [forall-assignment-stmt | where-stmt | where-construct | forall-stmt |
forall-construct | ...

do-loop ::= do-stmt
executable-section
do-ending

do-ending ::= enddo-stmt | executable

Note: If the do-stmt specifies a terminating label, the do-ending is the statement with that label and
shall not be a goto-stmt, return-stmt, stop-stmt, exit-stmt, cycle-stmt, arithmetic-if-stmt or any form of END
statement. If the do-stmt does not specify a terminating label, the do-ending shall be an enddo-stmit.

Page 78

Standard Fortran 95

63 Fortran 95 Expressions

This section contains a quick reference guide to expression syntax and semantics in Fortran 95. For more details see
Metcalf, Reid and Cohen “Fortran 95/2003 Explained” or the Fortran 95 standard “IS 1539-1:1997”.

)

e Syntax element definition is represented by ‘::=’.
e Names in italics (e.g., ‘expr’) are syntax element names.

e Items in ‘[]’ are optional.

)

Ellipsis ‘...” indicates optional repetition of the preceding item.

‘{’ and ‘}’ are for grouping only.

Items separated by ‘|’ are a “one-of-many” selection.

General Form
The general form of an expression expr is as follows:
expr = [unary-operator | operand [binary-operator operand |...

operand := literal-constant | object | array-constructor |
structure-constructor | function-reference | (expr)

binary-operator ==+ | = | x| / | *x | == | /=< |>]|<=|>=]| // |
.AND. | .OR. | .EQV. | .NEQV. | user-operator

unary-operator ::= + | = | .NOT. | user-operator

user-operator ::= . letter[letter...].
The operators ==, /=, <, >, <= and >= may also be represented by .EQ., .NE., .LT., .GT., .LE. and .GE. respectively.
Operators

Binary operators are associated left-to-right except for exponentiation, which associates right-to-left. The precedence
of each operator is shown by the following table, from highest to lowest:

Operators Binary/Unary
user-operator Unary
*k Binary
* / Binary
+ - Unary
+ - Binary
// Binary
== /=< ><=>= Binary
.NOT. Unary
.AND. Binary
.OR. Binary
.EQV. .NEQV. Binary
user-operator Binary

Literal Constants

literal-constant ::= integer-literal | real-literal | double-precision-literal |
logical-literal | complez-literal | character-literal

integer-literal ::= digit-string | - kind-specifier |
digit-string :=={ 01 1 121381415161 718129}.
kind-specifier ::== digit-string | name

Page 79

Standard Fortran 95

Note: name must be an INTEGER PARAMETER name.
Examples:

42
17_1
32767_int16

real-literal ::= mantissa [E exponent | [_ kind-specifier | |
digit-string E exponent [_ kind-specifier |

mantissa = digit-string . | digit-string | |
. digit-string

exponent ::= [+ | -] digit-string
Examples:
4.2

.71
327E+67_real64d

double-precision-literal ::= { mantissa | digit-string } D exponent

Examples:

4d2
1.7D-10

logical-literal ::= { .TRUE. | .FALSE. } [_ kind-specifier |

complex-literal ::= (int-or-real-literal , int-or-real-literal)
int-or-real-literal ::= integer-literal | real-literal
Examples:
(42,17_1)
(0,140)
character-literal := [kind-specifier _] { * [char..] > | " [char..] " }

Note: char is any character other than the quoting character, or the quoting character occurring twice

(e.g., ???7 is the same as "’ ").
Examples:
7422
"Say 'Hello’."
Constants
constant ::= literal-constant | name

Named constants are declared by the PARAMETER statement or by a type-declaration statement with the PARAMETER
attribute

Objects

Page 80

Standard Fortran 95

object ::= object-ref [% object-ref ... | (substring-range) |

object-ref ::= name | section-subscript-list]

section-subscript-list ::= (section-subscript | , section-subscript]...)

section-subscript ::= expr | triplet

triplet == [expr] : [expr][: expr]

substring-range ::= [expr | : [expr]

name = letter [letter | digit | _] ...

letter := AIBI|ICIDIEIFIGIHII|JIKILIMINIOIPIQIRISITIUIVIW]
XlYlzZ

variable ::= object

constant-subobject ::= object | character-literal (substring-range)

Note: For a variable, the name in the initial object-ref must be that of a variable.
For a constant-subobject, the name in the initial object-ref must be that of a constant (i.e., a PARAMETER).

An object is scalar if and only if all its object-ref’s are scalar. An object-ref with non-zero rank (i.e., an array) can
only be followed by scalar non-pointer object-refs.

An array element is a scalar object whose final object-ref contains a section-subscript-list where each section-subscript
is a scalar expression. For example

ARRAY(I,J)
SCALAR%ARRAY (I, J)

A structure component is an object with more than one object-ref whose final object-ref has no section-subscript-list
and all preceding object-refs are scalar. For example

SCALARY,SCALAR
ARRAY(T, J)%SCALAR

A substring is a scalar object with a substring-range. For example

SCALAR(I:J)
ARRAY(I,J) (K:L)

A whole array is an array object with only one object-ref.

An array section is an array object where a non-final object-ref has non-zero rank, or the final object-ref has a
section-subscript-list and one or more of the section-subscripts has non-zero rank or is a triplet. For example

ARRAY (2:M)
ARRAY%SCALAR

Array Constructor

array-constructor = (/ ac-item [, ac-item] ... /)
ac-item ::= expr | ac-implied-do
ac-implied-do ::= (expr | , expr] ... , name = expr , expr [, expr|)

Note: name is an integer variable name, but its value is not affected by the execution of the array construc-
tor. All expressions in an array constructor must have the same type and type parameters; in particular,
for characters, they must have the same length.

Structure Constructor

structure-constructor ::= name (expr [, expr] ...)

Page 81

Standard Fortran 95

Note: name must be the name of a derived type. Each expression must be assignment-compatible with
the corresponding component of the derived type.

Function Reference

function-reference ::= name ([expr [, expr] ...])

Note: name must be the name of a function.

Page 82

Standard Fortran 95

64 Fortran 95 Statements

This section contains a quick reference guide to the statements in Fortran 95.

9

Syntax element definition is represented by ‘::=’.

e Names in italics (e.g., ‘ezpr’) are syntax element names.

Items in ‘[]” are optional.

)

Ellipsis ‘...” indicates optional repetition of the preceding item.

‘{’ and ‘}’ are for grouping only.

Items separated by ‘|’ are a “one-of-many” selection.

Type Specification
The following syntax is used by several declaration statements.

type-spec ::= numeric-type | kind-specifier | |
numeric-type * digit-string |
DOUBLE PRECISION |
CHARACTER | char-specifier |

numeric-type ::= COMPLEX | INTEGER | LOGICAL | REAL
kind-specifier ::= ([KIND = | expr)

char-specifier ::= x digit-string |
* (char-length) |
(char-length [, [KIND =] expr]) |
(LEN = char-length [, KIND = expr |
(KIND = expr [, LEN = char-length |

)|
)

char-length ::== * | expr

Labels and Construct Names
label ::= digit-string

Note that the digit-string in a label must contain at most 5 digits, and at least one of them must be non-zero. Leading
zeroes are not significant, but do count towards the limit of 5.

Although it is not shown in the syntax definitions, all statements may be labelled and the FORMAT statement must be
labelled.

construct-name ::= name

Construct names are “class 1”7 names, and must not be the same as any other class 1 name in a subprogram; class 1
names includes variables, procedures, program unit names, et cetera.

Entity Declaration List
The following syntax is used by both Component Declaration and Type Declaration statements.

entity-decl-list ::= entity-decl [, entity-decl] ...
entity-decl ::= name [* char-length | [array-spec | [initial-value]

array-spec ::= explicit-shape | assumed-shape | deferred-shape | assumed-size
explicit-shape ::= (explicit-bound | , explicit-bound] ...)

explicit-bound ::= [expr : | expr

Page 83

Standard Fortran 95

assumed-shape ::= (assumed-bound [, assumed-bound | ...)
assumed-bound ::= [expr] :

deferred-shape := (deferred-bound | , deferred-bound] ...)
deferred-bound ::= :

assumed-size ::= ([explicit-bound ,]... assumed-size-bound)
assumed-size-bound := | expr : | *
initial-value ::= = expression | => NULL()

Allocatable Statement
ALLOCATABLE [:: | name [deferred-shape | [, name | deferred-shape]] ...

Declares the listed entities to be allocatable arrays. If array bounds are present, they must be deferred.

Allocate Statement

ALLOCATE (allocate-item [, allocate-item | ... [, STAT = variable |)
allocate-item ::= variable | explicit-shape |

Allocates a pointer or allocatable array. If the allocation fails and the STAT= clause is present, the STAT= variable will
be assigned a non-zero value.

Arithmetic If Statement (obsolescent)
IF (expr) label , label , label

Branches to one of three labels depending on whether ezpr is negative, zero or positive respectively. The expression
must be scalar and of type integer or real.

Assignment Statement
variable = expr
The expression is evaluated and assigned to the variable. For intrinsic assignment, it must be assignment-compatible
with the variable, that is:
1. If the variable is scalar, the expression must be scalar. If the variable is an array, the expression may be scalar
or an array of the same shape.
2. If the variable is of type LOGICAL, the expression must be LOGICAL but may be any KIND.
3. If the variable is of type CHARACTER, the expression must be of type CHARACTER and of the same KIND.
4. If the variable is of type INTEGER, REAL or COMPLEX, the expression must be of type INTEGER, REAL or COMPLEX.
5. If the variable is of derived type, the expression must be of that type.
For defined assignment, there must be a generic interface for ASSIGNMENT (=) which matches the types, kinds and

ranks of the variable and expression; the user-specified assignment routine is called. Note that in the case of derived
types, defined assignment is permitted to override the intrinsic assignment.

Backspace Statement

BACKSPACE ezpr
BACKSPACE (position-spec-list)

position-spec-list ::= position-spec | , position-spec |
position-spec ::= { [UNIT=] expr } | { I0STAT= variable } | { ERR= label }

Page 84

Standard Fortran 95

Note: A position-spec-list is required to have a UNIT= position-spec; the UNIT= keyword and equals sign
may be omitted only if it is the first in the list.

Positions the file connected to the specified unit to the record preceding the current one. An error condition is raised
if the file is not connected, or the unit does not support backspacing.

The effect of each position-spec is as below:

UNIT= Specifies the i/o unit; it must be a scalar integer expression identifying an external file.
ERR= Transfers control to the specified label if an error condition occurs during the i/o statement.

IOSTAT= Sets the variable to a positive number if an error occurs and to zero otherwise.

Block Data Statement
BLOCK DATA [name]

This is the first statement of a block data subprogram. All but one block data subprogram must be named.

Call Statement
CALL name [([actual-arg-list |) |

actual-arg-list ::= actual-arg [, actual-arg |...
actual-arg ::= expr | * label

Calls the named subroutine.

Case Statement
CASE DEFAULT | construct-name]

CASE (case-value-range | , case-value-range]...) [construct-name]
case-value-range = expr [: [expr]] |
. expr

Marks the beginning of a CASE part (and the end of any preceding CASE part). Statements in this part are executed
if the corresponding SELECT expression value satisfies the appropriate CASE condition:

.EQ. A case-value-range of the form (expr).

.LE. A case-value-range of the form (:expr).

.GE. A case-value-range of the form (ezpr:).

range A case-value-range of the form (expr:expr) is satisfied for values greater than or equal to the first expres-

sion, and less than or equal to the second expression.

DEFAULT The CASE DEFAULT clause is selected if the value does not satisfy any other CASE statements in that SELECT
construct.

Note that within a SELECT construct, each CASE statement must have distinct conditions so that only one can be
satisfied.

Close Statement

CLOSE expr
CLOSE (position-spec-list)

(See the BACKSPACE statement for the position-spec-list definition.)

Page 85

Standard Fortran 95

Closes the specified unit.

Common Statement

COMMON [/ [common-block-name | /| common-object-list
[[,]/ [common-block-name | / common-object-list]...

common-object-list ::= common-object [, common-object |...
common-object ::= name | array-spec]

Declares a common block. If no common-block-name is specified, “blank common” is the common block declared.
Multiple COMMON statements for the same common block act as if the common-object-lists were concatenated in a
single statement.

Component Definition Statement

type-spec | [, component-attribute-list | :: | entity-decl-list
component-attribute-list ::= component-attr [, component-attr |...
component-attr ::= DIMENSION array-spec |

POINTER

Declares one or more components of a derived type. Any array-spec in a component definition must be deferred-shape
if the POINTER attribute is present, and must be explicit-shape otherwise. Any initial-value that is present defines the
default value for that component of any new entities of the type.

Computed Goto Statement (obsolescent)
GOTO (label [, label] ...) expr

The (integer scalar) expression is evaluated; if it is less than one or greater than the number of labels in the list,
control is transferred to the next statement. Otherwise control is transferred to the corresponding label.

Contains Statement
CONTAINS

This statement separates the declarations of a module from its contained procedures, and the declarations and exe-
cutables of a main program or procedure from its contained procedure.

Continue Statement
CONTINUE

This is an executable statement that has no effect. If it has a label it may be used as the terminating statement of a
DO construct or as the target of a GOTO, computed-GOTO or assigned-GOTO.

Cycle Statement
CYCLE | construct-name |

Begins the next iteration of either the specified DO construct, or if construct-name is omitted, the innermost enclosing
DO construct.

Data Statement
DATA data-set [, data-set]...

data-set ::= data-object-list / data-value-list /

Page 86

Standard Fortran 95

data-object-list ::= data-object | , data-object |...
data-object ::= variable | data-implied-do
data-implied-do ::= (data-object | , data-object |... do-spec)

data-value-list ::= data-value [, data-value |...

data-value ::= [data-repeat * | data-constant

data-repeat ::= constant | constant-subobject

data-constant = literal-constant | NULL() | structure-constructor | object |

{+ | =} { real-literal | integer-literal }

Declares the initial value of the specified objects. This implicitly declares those objects to have the SAVE attribute.

Deallocate Statement
DEALLOCATE (expr [, expr][, STAT = variable])

Deallocates the storage occupied by an allocatable array or pointer. An error is raised if an allocatable array to be
deallocated is not allocated, or if a pointer to be deallocated is dissociated or is associated with an object that was
not allocated with ALLOCATE.

Dimension Statement
DIMENSION [:: | name array-spec [, name array-spec |...

Declares the name(s) to be arrays with the specified bounds.

Do Statement

[construct-name :] DO [label | [,] [loop-control]
loop-control ::= do-spec |

WHILE (logical-expr)
do-spec ::= name = expr , expr | , expr]

The initial statement of a DO loop. If label is present, the loop ends on the statement with that label, which cannot
be a GOTO, RETURN, STOP, EXIT, CYCLE, END or arithmetic IF statement. Nested DO loops can share the same ending
statement, provided it is not an ENDDO statement. If the loop-control is missing, the DO loop terminates only if control
is explicitly transferred outside the loop (e.g., by an EXIT, GOTO or RETURN statement).

If construct-name is present, the DO loop must end with an ENDDO statement identified with the same construct-name.

Else Statement
ELSE [construct-name]

Begins the ELSE part of an IF-THEN construct. Statements in this part are executed only if the IF condition is false and
all ELSEIF conditions at the same level are false. If the IF-THEN statement had a construct-name, the ELSE statement
may specify the same construct-name.

Elseif Statement
ELSE IF (expr) THEN | construct-name]

Begins a (new) ELSEIF part of an IF-THEN construct. Statements in this part are executed only if the IF condition
is false, all preceding ELSEIF conditions at the same level are false, and this ELSEIF condition is true. If the IF-THEN
statement had a construct-name, the ELSEIF statement may specify the same construct-name.

Elsewhere Statement

Page 87

Standard Fortran 95

ELSEWHERE | construct-name |

Begins the ELSEWHERE part of a WHERE construct. The statements in this part are executed only for those elements for
which the WHERE mask are false, and all ELSEWHERE masks at the same level are also false.

If the WHERE statement had a construct-name, the ELSEWHERE statement may specify the same construct-name.

Elsewhere Mask Statement
ELSEWHERE (expr) [construct-name]

Begins a masked ELSEWHERE part of a WHERE construct. The statements in this part are executed only for those
elements for which the previous masks are false and this ELSEWHERE mask are true. (The previous masks are the WHERE
mask and all preceding ELSEWHERE masks at the same level in this WHERE construct.) Note that the elements of the
ELSEWHERE mask that do not correspond to false elements of the previous masks are not evaluated.

If the WHERE statement had a construct-name, the ELSEWHERE-mask statement may specify the same construct-name.

End Block Data Statement
END [BLOCK DATA [name |]

The last statement of a block data subprogram. If name is present, the BLOCK DATA statement at the beginning of
the subprogram must have specified the same name.

Enddo Statement
END DO [construct-name]

Marks the end of a DO construct. The construct-name shall be present if and only if it were present on the DO statement,
and must be the same construct-name if so. If the DO statement specifies an ending label, the ENDDO statement must
be labelled with that label.

Endfile Statement

ENDFILE expr
ENDFILE (position-spec-list)

(See the BACKSPACE statement for the position-spec-list definition).

Writes an endfile record to the specified external file, truncating it at the current point.

End Function Statement
END [FUNCTION [name]]

The last statement of a function subprogram. If the function subprogram is a contained subprogram, the keyword
FUNCTION must be present. If name is present, it must be the name of the function.

Endif Statement
END IF [construct-name]

Marks the end of an IF-THEN construct. The construct-name shall be present if and only if it were present on the
IF-THEN statement, and must be the same construct-name if so.

End Interface Statement

END INTERFACE | generic-spec |

Page 88

Standard Fortran 95

Marks the end of an interface block. If the INTERFACE statement had a generic-spec, it may appear on the ENDINTERFACE
statement.

End Module Statement
END [MODULE [name |]

The final statement of a module subprogram. If name is present, it must match the name on the MODULE statement.

End Program Statement
END [PROGRAM [name | |

The final statement of a main program unit. If name is present, the main program must have a PROGRAM statement
and the names must be the same.

End Select Statement
END SELECT [construct-name |

Marks the end of a SELECT construct. The construct-name shall be present if and only if it were present on the SELECT
statement, and must be the same construct-name if so.

End Type Statement
END TYPE [name |

Marks the end of a derived type definition. If name is present it must be the name of the derived type.

Endwhere Statement
ENDWHERE [construct-name]

Marks the end of a WHERE construct. The construct-name shall be present if and only if it were present on the WHERE
statement, and must be the same construct-name if so.

Equivalence Statement

EQUIVALENCE equivalence-set [, equivalence-set ...
equivalence-set ::= (variable { , variable }...)

Declares each object in an equivalence-set to occupy the same storage.

Entry Statement
ENTRY name [([arg-list |) |

Declares an additional entry point to the enclosing subprogram (entry points are not allowed in block data, main
program, module and internal subprograms).

External Statement
EXTERNAL name [, name |...

Declares the listed names to be external subprograms or block data subprograms.

Exit Statement

Page 89

Standard Fortran 95

EXIT [construct-name]

Transfers control to the statement following named DO loop or, if construct-name is omitted, the innermost enclosing
DO loop.

Forall Statement

FORALL (triplet-spec [, triplet-spec ... [, expr]) forall-assignment-stmt
triplet-spec ::= name = expr : expr [: expr |

The iteration space of a FORALL statement or construct is the cross-product of the sets of possible index values defined
by each triplet-spec masked by the final ezpr (if present). Note that the scope of the index names is limited to the
FORALL statement — a variable with the same name outside the FORALL statement is unaffected.

The FORALL statement executes the forall-assignment statement for each index value set in the iteration space.

Forall Assignment Statement

variable = expr
variable => expr

This is exactly like a normal assignment statement except that the expr is evaluated for each element of the iteration
space before assignment or pointer assignment to each variable. Note that an assignment must not assign to the same
element of an array more than once in the iteration space, and if the variable is scalar then the iteration space must
be exactly one element.

Forall Construct Statement
FORALL (triplet-spec [, triplet-spec ... [, expr])
(See the FORALL statement for the triplet-spec definition and the explanation of the iteration space.)

Begins a FORALL construct.

Format Statement

FORMAT ([format-list |)

format-list ::= format-item | , format-item |...
format-item ::= [digit-string | { data-edit | (format-list) } | other-edit
data-edit ::= | B O Z} digit-string | . digit-string | |

{1

{F | D} digit-string . digit-string |
{EIEN|ES |G}

digit-string . digit-string | E digit-string | |
L digit-string |

A [digit-string |

other-edit := digit-string { / | P | X } |
{T | TR | TL } digit-string |
character-literal |
digit-string H char... |
/1 :|BN|BZ|S|SP|SS

Note: The character-literal must not have a kind-specifier. The H edit descriptor is followed by digit-
string chars, which may be any character except end-of-line; this edit descriptor is obsolescent and the
character-literal one should be used instead.

Declares an i/o format.

Note: The comma between format-items may be omitted as follows:

Page 90

Standard Fortran 95

1. Between a ‘P’ descriptor and a following ‘D’, ‘E’, ‘EN’, ‘ES’, ‘F’ or ‘G’ descriptor,
2. Before a ‘/’ descriptor with no preceding digit-string,
3. After a ‘/’ descriptor and

4. Before or after a ‘:’ descriptor.

Function Statement
[prefiz | FUNCTION name ([name [, name | ... |) [RESULT(name) |

prefiz :: = { type-spec | RECURSIVE | PURE | ELEMENTAL }...
Note: At most one occurrence of each prefix item is allowed.

This is the first statement of a function subprogram. If no RESULT variable is specified the result variable has the same
name as the function name (thus for direct recursion, a RESULT clause is necessary as well as the RECURSIVE keyword).

Goto Statement
GOTO label

Branches to the specified label, which must be on a branch target statement (i.e., the subprogram END statement, an
executable statement, the first statement of an executable construct or the last statement of an enclosing executable
construct).

If Statement
IF (expr) executable

Executes the sub-statement if and only if the condition is true. The sub-statement cannot itself be an IF statement.

If Then Statement
[construct-name : | IF (expr) THEN

Begins an IF-THEN construct and the THEN part thereof. Statements in this part are executed if and only if the
condition is true. This statement may have a construct-name; if it does, the corresponding ENDIF statement shall
have the same construct-name and intervening ELSE and ELSEIF statements at the same level may have the same
construct-name.

Implicit Statement
IMPLICIT implicit-spec | , implicit-spec]...

implicit-spec ::= type-spec (letter-spec [, letter-spec | ...)
letter-spec := letter | - letter]

Alters the implicit type mapping from the default. The default map is

IMPLICIT REAL(A-H,0-Z),INTEGER(I-N)

in an external subprogram or interface body, and the same as the containing subprogram in a contained subprogram.

Implicit None Statement

IMPLICIT NONE

Page 91

Standard Fortran 95

This statement sets the implicit type mapping for each letter to null, i.e., there are no implicit types. It must occur
before any PARAMETER statements or other declarations (but after any USE statements).

Inquire Statement

INQUIRE (IOLENGTH=object) output-item [, output-item]...
INQUIRE (inquire-spec | , inquire-spec ...)

inquire-spec ::== [UNIT=] expr | ACCESS= variable | ACTION= variable | BLANK= variable | CONVERT= variable |

DELIM= variable | DIRECT= variable | ERR= label | EXIST= variable | FILE= expr |
FORM= wvariable | FORMATTED= variable | T0STAT= variable | NAME= variable |
NAMED= wartable | NEXTREC= variable | NUMBER= wvariable | OPENED= wvariable |
PAD= variable | POSITION= variable | READ= variable | READWRITE= wvariable |
RECL= variable | SEQUENTIAL= variable | UNFORMATTED= variable

output-item ::= expr | ({ output-item , } ... do-spec)

The first form enquires as to the length needed to be specified for RECL= in the OPEN statement for an unformatted
sequential file to be able to write records as large as the output-item list.

The second form enquires either by unit or by file; exactly one UNIT= or FILE= clause must be present (the UNIT=
keyword can be omitted if it is the first inquire-spec). If the FILE= clause is used and that file is currently connected
to a unit, the effect is as if that unit were specified.

The effect of each clause is as below:

ACCESS=

ACTION=

BLANK=

CONVERT=

DELIM=

DIRECT=

ERR=

EXIST=

FORM=

Sets the scalar character object to >SEQUENTIAL’ if the unit is connected for sequential access, to >DIRECT’
if the unit is connected for direct access, and to >UNDEFINED’ if there is no connection.

Sets the scalar character object to *READ’ if the unit is connected for input only, to *WRITE’ if the unit
is connected for output only, to >READWRITE’ if the unit is connected for both input and output, and to
>UNDEFINED’ if there is no connection.

If the unit is connected for formatted i/o, sets the scalar character object to *NULL’ if blanks are treated
as nulls on input and to *ZERQ’ if they are treated as zeroes on input. Otherwise the object is set to
>UNDEFINED’.

Sets the scalar character object to >UNKNOWN’ if the file is not connected for unformatted input/output,
and otherwise to the value of the CONVERT= specifier in the OPEN statement or as determined by the
FORT_CONVERTn environment variable. Possible values are *NATIVE’, *BIG_NATIVE’, ’LITTLE_NATIVE’,
’BIG_IEEE’, *LITTLE_IEEE’, BIG_IEEE_DD’ and ’LITTLE_IEEE_DD’

Sets the scalar character object to >APOSTROPHE’ if the apostrophe is used to delimit character data in
list-directed or namelist output for the unit, to >QUOTE’ if the quotation mark is to be so used, to >NONE’
if no delimiter is to be used, and to >UNDEFINED’ if there is no connection.

Sets the scalar character object to *YES’ if direct access is allowed for the unit, to *NO’ if direct access is
not allowed, and to >UNKNOWN’ if the answer cannot be determined.

Transfers control to the specified label if an error condition occurs during execution of the enquiry.
Sets the scalar default logical object to .TRUE. if the file or unit exists, and to .FALSE. otherwise.

Sets the scalar character object to >FORMATTED if the unit is connected for formatted i/o, to > UNFORMATTED’
if the unit is connected for unformatted i/o, and to *UNDEFINED’ if there is no connection.

FORMATTED=

IOSTAT=

NAME=

Page 92

Sets the scalar character object to *YES’ if formatted i/o is allowed for the unit, to *NO” if it is not allowed,
and to *UNKNOWN’ if the answer cannot be determined.

Sets the scalar default integer object to a non-zero value to indicate an error condition occurring during
the enquiry, and to zero otherwise.

Sets the scalar character object to the name of the file connected to the unit (undefined if there is no name).

Standard Fortran 95

NAMED= Sets the scalar default logical object to .TRUE. if the unit is connected to a named file, and to .FALSE.
otherwise.

NEXTREC= If the unit is connected for direct access, sets the scalar default integer object to 1 greater than the number
of the record last read or written (or to 1 if no record has been read or written); otherwise the object
becomes undefined.

NUMBER= Sets the scalar default integer object to the number of the unit to which the file is connected, or to -1 if
the file is not connected to a unit.

OPENED= Sets the scalar default logical object to . TRUE. if the unit is connected to a file (or the file is connected to
a unit), and to .FALSE. otherwise.

PAD= Sets the scalar character object to ’NO” if the connection of the file to the unit included the PAD=’NQ’
specifier; otherwise it is set to *YES’.

POSITION=
Sets the scalar character object to *REWIND if the unit is positioned at the beginning of the file, to > APPEND”’
if it is positioned at the end of the file, to *ASIS’ if the unit was connected with that specification (and no
i/o or positioning has occurred since connection), to *UNDEFINED’ if the unit is connected for direct access
or there is no connection, and to a processor-dependent value otherwise.

READ= Sets the scalar character object to *YES’ if input is allowed for the file or unit, to *NO’ if input is not
allowed for the file or unit, and to >UNKNOWN’ if the answer cannot be determined.

READWRITE=
Sets the scalar character object to >YES’ if both input and output are allowed for the file or unit, to ’NO’
if at least one of input or output is not allowed for the file or unit, and to >UNKNOWN’ if the answer cannot
be determined.

RECL= Sets the scalar default integer object to the record length of a file connected for direct access or to the
maximum record length of a file connected for sequential access. If there is no connection the object is
undefined.

SEQUENTIAL=

Sets the scalar character object to *YES’ if sequential access is allowed for the unit, to *NO’ if sequential
access is not allowed, and to >UNKNOWN’ if the answer cannot be determined.

UNFORMATTED=
Sets the scalar character object to *YES’ if unformatted i/o is allowed for the unit, to *NO” if it is not
allowed, and to >UNKNOWN’ if the answer cannot be determined.

WRITE= Sets the scalar character object to *YES’ if output is allowed for the file or unit, to N0’ if output is not
allowed for the file or unit, and to >UNKNOWN’ if the answer cannot be determined.

Intent Statement
INTENT ({ IN | OUT | INOUT }) [:: | name [, name |...

Declares the specified names, which must be the names of dummy arguments, to have the specified intent. INTENT (IN)
arguments cannot appear in any context where they will be modified, INTENT (OUT) arguments are undefined on entry
to the procedure, and INTENT(INOUT) and INTENT(OUT) arguments can only be associated with modifiable actual
arguments (e.g., not expressions).

Interface Statement

INTERFACE
INTERFACE { name | ASSIGNMENT (=) | OPERATOR (operator) }

The first form introduces an interface block, containing interface bodies which specify the interfaces to external or
dummy procedures. The second form additionally defines a generic name or operator by which these procedures may
be referenced, and its interface block may also contain MODULE PROCEDURE statements.

Page 93

Standard Fortran 95

Intrinsic Statement
INTRINSIC name [, name]...

Declares the listed names to be intrinsic procedures.

Module Statement
MODULE name

This is the first statement of a module subprogram.

Module Procedure Statement
MODULE PROCEDURE name [, name]...

This statement is only allowed within generic interface blocks, where it declares the listed names as module procedures
to be included in the generic.

Namelist Statement
NAMELIST namelist-group [[,] namelist-group |...
namelist-group := /name/ name [, name]...

Declares one or more i/o namelists. Multiple NAMELIST specifications for the namelist group /name/ are treated
as if they were concatenated. The names in a namelist group must all be variables and not automatic, adjustable,
allocatable, pointer, or contain a pointer.

Nullify Statement
NULLIFY (object | , object] ...)

Sets the pointer-association status of the listed objects, which must be pointers, to dissociated.

Open Statement
OPEN (open-spec [, open-spec ...)

open-spec := [UNIT=] expr | ACCESS= expr | ACTION= expr | BLANK= expr | CONVERT= expr | DELIM= expr |
ERR= label | FILE= expr | FORM= expr | IOSTAT= object | PAD= expr | POSITION= expr |
RECL= expr | STATUS= expr

Connects a file to a unit with the specified properties.

Optional Statement
OPTIONAL [:: | name [, name]...

Declares the specified names, which must be the names of dummy arguments, to be optional dummy arguments.

Parameter Statement
PARAMETER (name = expr [, name = expr |...)

Declares the names to be named constants with the specified values. The expressions must be initialisation expressions
and must be assignment compatible with the names.

Pause Statement (deleted)

Page 94

Standard Fortran 95

PAUSE | constant |

Pauses program execution. If present, the constant must be a scalar character literal with no kind-param or a digit-
string with at most 5 digits.

Pointer Statement
POINTER [:: | name [deferred-shape | [, name [deferred-shape | |...

Declares the names to be pointers.

Pointer Assignment Statement
variable => expr

Associates the pointer variable with expr, which must be another pointer, a variable with the TARGET attribute, or a
reference to a function that returns a pointer result.

Print Statement

PRINT format | , output-item]...

format ::= * | label | expr
Synonymous with a WRITE statement with ‘UNIT=+" and a FMT=format clause.

The possibilities for format are:

x? indicates list-directed formatting.

label must be the label of a FORMAT statement.

expr A character expression may be supplied; its value is interpreted as the text following the keyword FORMAT
of a FORMAT statement. If the expression is array-valued the concatenation of all elements is interpreted in
this way.

expr (obsolescent) A default scalar integer variable name may be supplied, in which case it must have been

ASSIGNed the label of a FORMAT statement.

Private Statement
PRIVATE [[:: | access-id | , access-id |...]
access-id ::= name | ASSIGNMENT (=) | OPERATOR (operator)

This statement can only occur in the declaration section of a module or before the component definitions in a type
definition.

When this statement appears in a type definition, there can be no access-ids; it causes the components of the type to
be inaccessible from outside the module in which the type is defined.

In a module’s declaration section, this statement either sets the default accessibility of entities within the module to
be PRIVATE, i.e., not accessible, or the accessibility of each access-id is set to be PRIVATE.

Program Statement
PROGRAM name

This is the first statement of a main program. It is optional.

Public Statement

Page 95

Standard Fortran 95

PUBLIC [[::] access-id [, access-id]... |

This statement can only occur in the declaration section of a module. With no access-id list, it confirms that the
default accessibility of entities in the module is PUBLIC. With an access-id list, it explicitly sets the accessibility of
those access-ids to PUBLIC.

Read Statement
READ format [, input-item]...

READ (control-spec [, control-spec |...) [input-item | , input-item]... |
input-item ::= variable | ({ input-item , }... do-spec)
control-spec ::= [UNIT=]{ * | expr } |

[FMT= | format | [NML=] name | ADVANCE= expr | END= label |
EOR= label | ERR= label | IOSTAT= expr | REC= expr | SIZE= expr

(See the PRINT statement for format details.)

Reads one or more records (or partial records with ADVANCE="N0’) from the specified unit.

The effect of each control-specifier is as below:

UNIT= Identifies the i/o unit; “*’ indicates the default unit, a scalar integer expression indicates an external unit,
and a character expression indicates an internal unit.

FMT= Establishes the format; this is absent for namelist formatting or for unformatted i/o.

NML= Specifies a namelist group name for namelist formatted i/o.

ADVANCE= Indicates whether non-advancing (expression evaluates to >N0?) or the usual advancing (expression evaluates
to ’YES?) i/o is performed. This control-specifier is only allowed for formatted sequential i/o with an explicit
format (i.e., not namelist or list-directed).

END= Transfers control to the specified label if an end-of-file condition occurs during input (not allowed in WRITE).

EOR= Transfers control to the specified label if an end-of-record condition occurs during input (not allowed in
WRITE). ADVANCE="NO’ must be specified.

ERR= Transfers control to the specified label if an error condition occurs during i/o.

I0OSTAT= Sets the object to —1 if an end-of-file occurs, to —2 if an end-of-record occurs (non-advancing only), to a
positive number if an error occurs, and to zero otherwise. Note that the negative values may vary on other

compilers.
REC= Specifies the record number for direct-access i/o.
SIZE= Sets the object to the number of characters transferred by data edit descriptors (not allowed in WRITE).

ADVANCE="NO’ must be specified.

Return Statement
RETURN | expr]

Return immediately from the procedure. If the procedure is a subroutine with alternate return arguments (obsoles-
cent), the scalar integer expression indicates to which label control is to be transferred on return (if the expression
is less than one or greater than the number of alternate return arguments, execution continues with the statement
following the subroutine reference).

Rewind Statement

REWIND expr
REWIND (position-spec-list)

Page 96

Standard Fortran 95

(See the BACKSPACE statement for the position-spec-list definition).
Positions an i/o unit, which must be connected to a rewindable file, to the beginning of the file.

Save Statement
SAVE [[:: | save-item | , save-item ... |
save-item ::= wvariable-name | /common-block-name/

Specifies the SAVE attribute for the listed variables or common blocks, or, with no save-item list, specifies that all
possible variables and common blocks in the current scoping unit should implicitly have the SAVE attribute by default.

Select Statement
[construct-name : | SELECT CASE (expr)

The initial statement of a SELECT CASE construct. Control is transferred to the CASE statement satisfied by the
expression’s value, or to the END SELECT statement if no CASE is satisfied by the value.

Statement Function Statement (obsolescent)
name ([name [, name | ... |) = expr

Defines a statement function.

Stop Statement
STOP | constant |

Halts program execution. If present, the constant must be a scalar character literal with no kind-param or a digit-string
with at most 5 digits.

Subroutine Statement

[RECURSIVE | PURE | ELEMENTAL]... SUBROUTINE name | ([arg-list |)]
(Note that at most one occurrence of each keyword is allowed).

arg-list 2= arg [, arg |...
arg = name | *

This is the first statement of a subroutine subprogram. RECURSIVE must be specified if the subroutine calls itself,
either directly or indirectly. If PURE is specified, the subroutine must satisfy the pure subroutine constraints and can
then be called from a pure function. An arg that is ‘*’ signfies an alternate return label; this is obsolescent.

Target Statement
TARGET [:: | name [array-spec | [, name [array-spec]]...

Declares that the specified entities have the TARGET attribute.

Type Statement
TYPE name

This statement marks the beginning of the definition of the derived type name.

Page 97

Standard Fortran 95

Type Declaration Statement
type-spec [[, attr-spec | ... ::] entity-decl-list

attr-spec ::= ALLOCATABLE | DIMENSION array-spec | EXTERNAL | INTENT ({ IN | OUT | INOUT }) |
INTRINSIC | OPTIONAL | PARAMETER | POINTER | PRIVATE | PUBLIC | SAVE | TARGET

Declares the listed entities to be of the specified type with the specified attributes.

Use Statement

USE name [, rename-list |
USE name, ONLY: only-list

rename-list ::= rename [, rename]...
rename = local-name => remote-name
only-list ::= only-item [, only-item |...
only-item ::= name | rename

The USE statement accesses the named module. Multiple USE statements for the same module act as if all the rename-
lists and only-lists were concatenated.

If all the USE statements in a scoping unit for a particular module have the ONLY clause, only those items listed in a
rename-list or only-list are accessible.

A rename causes item remote-name in the referenced module to be accessible in the local scoping unit by local-name.
An only-item that is not a rename causes the name in the referenced module to be accessible in the local scoping unit
by the same name.

Where Assignment Statement
variable = expr

The expression is evaluated (and the object updated) only for those elements for which the current control mask is
true.

Where Statement
WHERE (expr) where-assignment-stmt

Executes the Where Assignment statement with the provided expression as the control mask.

Where Construct Statement
[construct-name : | WHERE (expr)

Begins a Where Construct with the provided expression as the control mask.

Write Statement
WRITE (control-spec | , control-spec | ...) output-item [, oulput-item |...

(See the READ statement for control-spec details.)

Writes one or more records (or partial records with ADVANCE="N0") to the specified unit.

Page 98

Standard Fortran 95

65 Fortran 95 Intrinsic Procedures

This section provides a quick reference guide to the Fortran 90/95 intrinsic functions and subroutines.

Procedures marked with ‘*’

are non-generic versions of other intrinsics. Procedures marked with ‘E’ are elemental.

Procedures marked with ‘I’ are inquiry functions; these query characteristics of a variable other than its value.

Procedures marked with ‘P’ may be supplied as actual procedure arguments; when it is used as a procedure argument
all arguments are scalar, no optional arguments are allowed, and it is not generic: if the name is normally generic the
procedure argument version is default INTEGER if it begins with the letter I to N, and default REAL otherwise.

Arguments named ‘KIND’ must be initialisation expressions.

Arguments printed in italics (e.g., ‘DIM’) are optional.

Intrinsic Functions

Function Name
ABS(A)

ACHAR(I)

AC0S (X)

ADJUSTL (STRING)
ADJUSTR (STRING)
AIMAG(Z)
AINT(A,KIND)
ALL(MASK,DIM)
ALLOCATED (ARRAY)
ALOG (X)

AL0G10(X)
AMAXO(A1,A2,43, ...
AMAX1(A1,A2,43,...
AMINO(A1,A2,43, ...
AMIN1(A1,A2,43,...
AMOD (A, P)
ANINT(A,KIND)

ANY (MASK, DIM)
ASIN(X)

ASSOCIATED (POINTER, TARGET)
ATAN(X)

ATAN2(Y,X)

BIT_SIZE(I)

BTEST(I,P0S)

CABS (A)

CCos (X)

CEILING(A,KIND)

CEXP (X)

CHAR(I,KIND)

CLOG (X)

CMPLX (X, Y,KIND)

CONJG(Z)

N

Flags

EP
EP
EP
EP
*P
*P
*P
*p

EP

Description

Absolute value.

Produce character from ASCII value.
Arccosine.

Adjust string to the left by moving leading blanks to the end.

Adjust string to the right.

The imaginary part of a complex number.

Truncate to a whole number.

Reduce MASK with the .AND. operation.

Whether an allocatable array is allocated.

LOG function restricted to scalar default real.

LOG10 function restricted to scalar default real.

REAL (MAX (A1,A2,43,...)) with scalar default integer args.
MAX function restricted to scalar default real.
REAL(MIN(A1,A2,43,...)) with scalar default integer args.
MIN function restricted to scalar default integer.

MOD function restricted to scalar default real.

Round to a whole number.

Reduce MASK with the .OR. operation.

Arcsine.

Whether a pointer is associated with a target.
Arctangent.

Arctangent.

Number of bits in an integer type.

Whether a particular bit is 1.

ABS function restricted to scalar default complex.

COS function restricted to scalar default complex.
Smallest integer greater than or equal to A.

EXP function restricted to scalar default complex.
Produce character from native coded character set value.
LOG function restricted to scalar default complex.
Convert to complex.

Complex conjugate.

Page 99

Standard Fortran 95

Function Name
COS(X)

COSH(X)

COUNT (MASK, DIM)
CSHIFT(ARRAY,SHIFT,DIM)
CSIN(X)

CSQRT (X)

DABS(A)

DACOS (X)
DASIN(X)

DATAN (X)
DATAN2(Y,X)
DBLE(A)

DCOS (X)

DCOSH (X)
DDIM(X,Y)

DEXP (X)
DIGITS(X)
DIM(X,Y)

DINT(A)

DLOG(X)
DLOG10(X)
DMAX1(A1,A2,43,...)
DMIN1(A1,A2,43,...)
DMOD(A,P)
DNINT(A)
DOT_PRODUCT (VECTOR_A, VECTOR_B)
DPROD(X,Y)
DSIGN(A,B)
DSIN(X)

DSINH(X)

DSQRT (X)

DTAN (X)

DTANH (X)

EOSHIFT (ARRAY,SHIFT, BOUNDARY,DIM)
EPSILON(X)
EXP(X)
EXPONENT (X)
FLOAT(A)
FLOOR (A, KIND)
FRACTION(X)

HUGE (X)

IABS(A)
IACHAR(C)
IAND(I,J)
IBCLR(I,POS)
IBITS(I,POS,LEN)
IBSET(I,POS)
ICHAR(C)
IDIM(X,Y)
IDINT(A)
IDNINT(A)

Page 100

Flags
EP
EP

*p
*pP
*pP
*p
*p
*p
*p
E
*p
*p
*p
*pP
I
EP
*p
*p
*p
*
*
*p
*p

EP
*pP
*p
*p
*p
*p
*pP

N e~ e T~

Description

Cosine.

Hyperbolic cosine.

Reduce MASK by counting .TRUE. elements.
Circular shift of an array.

SIN function restricted to scalar default complex.
SQRT function restricted to scalar default complex.
ABS function restricted to scalar double precision.
ACOS function restricted to scalar double precision.
ASIN function restricted to scalar double precision.
ATAN function restricted to scalar double precision.
ATAN2 function restricted to scalar double precision.
Convert to double precision.

COS function restricted to scalar double precision.
COSH function restricted to scalar double precision.
DIM function restricted to scalar double precision.
EXP function restricted to scalar double precision.
Number of mantissa digits in the model for X.
Non-negative difference, MAX(0,X-Y).

AINT function restricted to scalar double precision.
LOG function restricted to scalar double precision.
LOG10 function restricted to scalar double precision.
MAX function restricted to scalar double precision.
MIN function restricted to scalar double precision.
MOD function restricted to scalar double precision.
ANINT function restricted to scalar double precision.
Dot product.

Double precision result of X*Y.

SIGN function restricted to scalar double precision.
SIN function restricted to scalar double precision.
SINH function restricted to scalar double precision.
SQRT function restricted to scalar double precision.
TAN function restricted to scalar double precision.
TANH function restricted to scalar double precision.
End-off array shift.

Number almost neglible compared to 1.
Exponential (e*).

The exponent part of a floating-point number.
REAL function restricted to scalar default integer.
Largest integer less than or equal to A.

The mantissa of a floating-point number.

The largest number in the model for a real type.
ABS function restricted to scalar default integer.
ASCII value for a character.

Bitwise and.

Clear specified bit.

Extract a group of bits.

Set a bit.

Native coded character set value for a character.
DIM function restricted to scalar default integer.
INT function restricted to scalar double precision.
NINT function restricted to scalar double precision.

Standard Fortran 95

Function Name
IEOR(TI,J)
IFIX(A)

INDEX (STRING, SUBSTRING, BACK)

INT(A,KIND)

I0R(I,J)
ISHFT(I,SHIFT)
ISHFTC(I,SHIFT,SIZE)
ISIGN(A,B)

KIND(X)

LBOUND (ARRAY , DIM)

LEN (STRING)
LEN_TRIM(STRING)
LGE(STRING_A,STRING_B)
LGT (STRING_A,STRING_B)
LLE(STRING_A,STRING_B)
LLT(STRING_A,STRING_B)
LOG(X)

L0OG10(X)
LOGICAL(L,KIND)

MATMUL (MATRIX_A,MATRIX_B)
MAX(A1,A2,43,...)
MAXO(A1,A2,43,...)
MAX1(A1,A2,43,...)
MAXEXPONENT (X)

MAXLOC (ARRAY, MASK)
MAXLOC (ARRAY,DIM, MASK)
MAXVAL (ARRAY , MASK)
MAXVAL (ARRAY ,DIM, MASK)

MERGE (TSOURCE, FSOURCE , MASK)

MIN(A1,A2,43,...)
MINO(A1,A2,43,...)
MIN1(A1,A2,43,...)
MINEXPONENT (X)
MINLOC(ARRAY, MASK)
MINLOC (ARRAY,DIM, MASK)
MINVAL (ARRAY, MASK)
MINVAL (ARRAY,DIM, MASK)
MOD(A,P)

MODULO(A,P)
NEAREST (X, S)
NINT(A,KIND)

NOT(I)

NULL (MOLD)

PACK (ARRAY ,MASK, VECTOR)
PRECISION (X)

PRESENT (A)

PRODUCT (ARRAY , MASK)
PRODUCT (ARRAY ,DIM, MASK)
RADIX (X)

RANGE (X)

REAL (A, KIND)

Flags

E

*

EP

Dl i o~ NS

~ % % I

~ % x>

EP

& =

EP

~

~

Description

Bitwise exclusive or.

INT function restricted to scalar default real.
Search for substring.

Convert to integer.

Bitwise inclusive or.

Shift bits.

Shift bits circularly.

SIGN function restricted to scalar default integer.
Kind type parameter of X.

Lower bound(s) of an array.

Length of a character string.

Length of a character string ignoring trailing blanks.
Comparison (>=) using ASCII collating sequence.
Comparison (>) using ASCII collating sequence.
Comparison (<=) using ASCII collating sequence.
Comparison (<) using ASCII collating sequence.
Natural logarithm.

Common logarithm.

Convert to a specific logical kind.

Matrix multiplication.

Maximum value.

MAX function restricted to scalar default integer.

INT(MAX(A1,A2,43,...)) with scalar default real args.

Maximum model exponent value for X.

Position of maximum value in an array.
Dimensional reduction of maximum value positions.
Reduce a (masked) array with the MAX intrinsic.
Dimensional reduction by the MAX intrinsic.

Choose value depending on logical value.

Minimum value.

MIN function restricted to scalar default integer.

INT(MIN(A1,A2,43,...)) with scalar default real args.

Minimum model exponent value for X.

Position of minimum value in an array.
Dimensional reduction of minimum value positions.
Reduce a (masked) array with the MIN intrinsic.
Dimensional reduction by the MIN intrinsic.
Remainder; sign(result) = sign(4).

Modulo; sign(result) = sign(P).

Nearest machine-representable number.

Round and convert to integer.

Bitwise complement.

Null (disassociated) pointer.

Pack an array into a vector.

Decimal model precision for X.

Whether an optional argument is present.
Reduce a (masked) array by multiplication.
Dimensional reduction by multiplication.

Model radix for X.

Decimal model exponent range for X.

Convert to real.

Page 101

Standard Fortran 95

Function Name Flags Description
REPEAT (STRING,NCOPIES) Concatenate a string with itself.
RESHAPE (SOURCE, SHAPE, PAD, ORDER) Reshape an array.
RRSPACING (X) E Reciprocal relative model spacing near X.
SCALE(X,I) E X+RADIX (X)**I.
SCAN(STRING,SET, BACK) E Look for characters in a set.
SELECTED_INT_KIND(R) Integer kind with at least R decimal digits.
SELECTED_REAL KIND(P,R) Real kind with at least P decimal precision and/or
at least R decimal exponent range.

SET_EXPONENT (X, I) E X*RADIX (X)** (I-EXPONENT (X)).
SHAPE (SOURCE) 1 Shape of an array.
SIGN(A,B) EP A with the sign of B.
SIN(X) EP Sine.
SINH(X) EP Hyperbolic sine.
SIZE(ARRAY,DIM) 1 Size of an array or dimension.
SNGL(A) * REAL function restricted to scalar double precision.
SPACING (X) E Spacing of model numbers near X.
SPREAD (SOURCE,DIM,NCOPIES) Replicate an array in a given dimension by copying.
SQRT (X) EP Square root.
SUM(ARRAY , MASK) Reduce a (masked) array by addition.
SUM(ARRAY,DIM, MASK) Dimensional reduction of a (masked) array by addition.
TAN (X) EP Tangent.
TANH (X) EP Hyperbolic tangent.
TINY(X) I Smallest model number for the kind of X.
TRANSFER (SOURCE,MOLD, SIZE) Copy internal representation.
TRANSPOSE (MATRIX) Transpose an array.
TRIM(STRING) Character string with trailing blanks removed.
UBOUND (ARRAY, DIM) I Upper bound(s) of an array.
UNPACK (VECTOR ,MASK,FIELD) Unpack a vector into an array.
VERIFY (STRING,SET,BACK) E Look for characters not in set.

Intrinsic Subroutines
Subroutine Name Flags Description
CPU_TIME(TIME) CPU execution time.
DATE_AND_TIME(DATE, TIME, ZONE, VALUES) Date and time information.
MVBITS (FROM,FROMPOS,LEN, TO, TOPOS) E Move or copy bitfield.
RANDOM_NUMBER (HARVEST) Return pseudo-random number(s).
RANDOM_SEED(SIZE, PUT,GET) Control pseudo-random number generator.
SYSTEM_CLOCK (COUNT, COUNT_RATE, COUNT_MAX) Real-time clock information.

Page 102

Fortran 2003 Extensions

66 Fortran 2003 Overview

This part of the manual describes those parts of the Fortran 2003 language which are not in Fortran 95, and indicates
which features are currently supported by the NAG Fortran Compiler.

Features marked in the section heading as ‘[5.3.1]" are newly available in release 5.3.1, those marked ‘[5.3] were
available in release 5.3, those marked ‘[5.2]” were available in release 5.2, those marked ‘[5.1]’ were available in release
5.1 (and in some cases earlier), and those marked ‘[n/a]’ are not yet available.

Fortran 2003 is a major advance over Fortran 95: the new language features can be grouped as follows:

e object-oriented programming features,
e allocatable attribute extensions,

e other data-oriented enhancements,

e interoperability with C,

e IEEE arithmetic support,

e input/output enhancements and

e miscellaneous enhancements.

The basic object-oriented features are type extension, polymorphic variables, and type selection; these provide in-
heritance and the ability to program ad-hoc polymorphism in a type-safe manner. The advanced features are typed
allocation, cloning, type-bound procedures, type-bound generics, and object-bound procedures. Type-bound proce-
dures provide the mechanism for dynamic dispatch (methods).

The ALLOCATABLE attribute is extended to allow it to be used for dummy arguments, function results, structure
components, and scalars (not just arrays). An intrinsic procedure has been added to transfer an allocation from one
variable to another. Finally, in intrinsic assignment, allocatable variables or components are automatically reallocated
with the correct size if they have a different shape or type parameter value from that of the expression. This last
feature, together with deferred character length, provides the user with true varying-length character variables.

There are two other major data enhancements: the addition of type parameters to derived types, and finalisation (by
final subroutines). Other significant data enhancements are the PROTECTED attribute, pointer bounds specification and
rank remapping, procedure pointers, and individual accessibility control for structure components.

Interoperability with the C programming language consists of allowing C procedures to be called from Fortran, Fortran
procedures to be called from C, and for the sharing of global variables between C and Fortran. This can only happen
where C and Fortran facilities are equivalent: an intrinsic module provides derived types and named constants for
mapping Fortran and C types, and the BIND(C) syntax is added for declaring Fortran entities that are to be shared
with C. Additionally, C style enumerations have been added.

Support for IEEE arithmetic is provided by three intrinsic modules. Use of the IEEE_FEATURES module requests IEEE
compliance for specific Fortran features, the IEEE_EXCEPTIONS module provides access to IEEE modes and exception
handling, and the TEEE_ARITHMETIC module provides enquiry functions and utility functions for determining the extent
of IEEE conformance and access to IEEE-conformant facilities.

The input/output facilities have had three major new features: asynchronous input/output, stream input/output,
and user-defined procedures for derived-type input/output (referred to as “defined input/output”). Additionally, the
input/output specifiers have been regularised so that where they make sense: all specifiers that can be used on an
OPEN statement can also be used on a READ or WRITE statement, and vice versa. Access to input/output error messages
is provided by the new IOMSG= specifier, and processor-dependent constants for input/output (e.g. the unit number
for the standard input file) are provided in a new intrinsic module.

Finally, there are a large number of miscellaneous improvements in almost every aspect of the language. Some of the
more significant of these are the IMPORT statement (provides host association into interface blocks), the VALUE and

Page 103

Fortran 2003 Extensions

VOLATILE attributes, the ability to use all intrinsic functions in constant expressions, and extensions to the syntax of
array and structure constructors.

67 Object-oriented programming

67.1 Type Extension

Type extension provides the first phase of object orientation: inheritance and polymorphic objects.

67.1.1 Extending Types [5.0]

Any derived type can be extended using the EXTENDS keyword, except for SEQUENCE types and BIND(C) types.
(The latter types are “non-extensible”, as are intrinsic types, whereas all other derived types are “extensible”.) The
extended type inherits all the components of the parent type and may add extra components.

For example:

TYPE point
REAL x,y

END TYPE

TYPE,EXTENDS (point) :: point_3d
REAL =z

END TYPE

The type point_3d has x, y and z components. Additionally, it has a point component which refers to the inher-
ited part; this “parent component” is “inheritance-associated” with the inherited components, so that the pointix
component is identical to the x component et cetera.

However, when extending a type it is not required to add any new components; for example,

TYPE,EXTENDS (point) :: newpoint
END TYPE

defines a new type newpoint which has exactly the same components as point (plus the associated parent component).
Similarly, it is no longer necessary for a type to contain any components:

TYPE empty_type
END TYPE

declares the extensible (but not extended) type empty_type which has no components at all.

67.1.2 Polymorphic Variables [5.0]

A polymorphic variable is a pointer, allocatable array or dummy argument that is declared using the CLASS keyword
instead of the TYPE keyword. A CLASS (typename) variable can assume any type in the class of types consisting of
TYPE (typename) and all extensions of typename.

For example:
REAL FUNCTION bearing(a)
CLASS(point) a

bearing = atan2(aky,a%x)
END

The function bearing may be applied to a TYPE(point) object or to a TYPE(point_3d) object, or indeed to an object
of any type that is an extension of TYPE(point).

Page 104

Fortran 2003 Extensions

67.1.3 Type Selection [5.0]

The SELECT TYPE construct provides both a means of testing the dynamic type of a polymorphic variable and access
to the extended components of that variable.

For example:

CLASS(t) x

SELECT TYPE(p=>x)

TYPE IS (t1)
!
! This section is executed only if X is exactly of TYPE(tl), not an
! extension thereof. P is TYPE(t1).
!

TYPE IS (t2)
!
! This section is executed only if X is exactly of TYPE(t2), not an
! extension thereof. P is TYPE(t2).
!

CLASS IS (t3)
!
! This section is executed if X is of TYPE(t3), or of some extension
! thereof, and if it is not caught by a more specific case. P is CLASS(t3).
!

END SELECT

Note that ‘SELECT TYPE(x)’ is short for ‘SELECT TYPE(x=>x)’.

67.1.4 Unlimited polymorphism [5.2]

A variable that is ‘CLASS(*)’ is an unlimited polymorphic variable. It has no type, but can assume any type including
non-extensible types and intrinsic types (and kinds). Apart from allocation, deallocation and pointer assignment,
to perform any operation on an unlimited polymorphic you first have to discover its type using SELECT TYPE. For
example:

CLASS(*) ,POINTER :: x

CHARACTER(17) ,TARGET :: ch

x => ch

SELECT TYPE(x)

TYPE IS (COMPLEX(XIND=KIND(0d0)))
PRINT *,x+1

TYPE IS (CHARACTER(LEN=%))
PRINT *,LEN(x)

END SELECT

Note that in the case of CHARACTER the length must be specified as ‘*’ and is automatically assumed from whatever
the polymorphic is associated with.

In the case of a non-extensible (i.e. BIND(C) or SEQUENCE) type, SELECT TYPE cannot be used to discover the type;
instead, an unsafe pointer assignment is allowed, for example:

TYPE t
SEQUENCE
REAL x
END TYPE
CLASS(*) ,POINTER :: x
TYPE(t) ,POINTER :: y

Page 105

Fortran 2003 Extensions

y => x ! Unsafe - the compiler cannot tell whether X is TYPE(t).

67.1.5 Ad hoc type comparison [5.3]
Two new intrinsic functions are provided for comparing the dynamic types of polymorphic objects. These are

EXTENDS_TYPE_OF (A ,MOLD)
SAME_TYPE_AS(A,B)

The arguments must be objects of extensible types (though they need not be polymorphic). SAME_TYPE_AS returns
.TRUE. if and only if both A and B have the same dynamic type. EXTENDS_TYPE_OF returns .TRUE. if and only if the
dynamic type of A is the same as, or an extension of, the dynamic type of MOLD. Note that if MOLD is an unallocated
unlimited polymorphic (CLASS(*)), the result will be true regardless of the state of A.

The arguments are permitted to be unallocated or disassociated, but they are not permitted to be pointers with an
undefined association status.

It is recommended that where possible these intrinsic functions be avoided, and that SELECT TYPE be used for type
checking instead.

67.2 Typed allocation [5.1]

The ALLOCATE statement now accepts a type-spec; this can be used to specify the dynamic type (and type parameters,
if any) of an allocation. The type-spec appears before the allocation list, and is separated from it by a double colon.

For example, if T is an extensible type and ET is an extension of T,

CLASS(t) ,POINTER :: a(:)
ALLOCATE(et::a(100))

allocates A to have dynamic type ET. Note that the type-spec in an ALLOCATE statement omits the TYPE keyword for
derived types, similarly to the TYPE IS and CLASS IS statements.

An unlimited polymorphic object can be allocated to be any type including intrinsic types: for example

CLASS (*) ,POINTER :: c,d
ALLOCATE (DOUBLE PRECISION::c)
READ *,n

ALLOCATE (CHARACTER (LEN=n) : : d)

allocates C to be double precision real, and D to be of type CHARACTER with length N.

Typed allocation is only useful for allocating polymorphic variables and CHARACTER variables with deferred length
(LEN=:). For a non-polymorphic variable, the type-spec must specify the declared type and, if it is type CHARACTER
but not deferred-length, to have the same character length. The character length must not be specifed as an asterisk
(CHARACTER (LEN=+*)) unless the allocate-object is a dummy argument with an asterisk character length (and vice
versa).

Finally, since there is only one type-spec it must be compatible with all the items in the allocation list.

67.3 Sourced allocation (cloning) [5.1]

The ALLOCATE statement now accepts the SOURCE= specifier. The dynamic type and value of the allocated entity is
taken from the expression in the specifier. If the derived type has type parameters (q.v.), the value for any deferred
type parameter is taken from the source expression, and the values for other type parameters must agree. This is not
just applicable to derived types: if the entity being allocated is type CHARACTER with deferred length (LEN=:), the
character length is taken from the source expression.

Page 106

Fortran 2003 Extensions

Only one entity can be allocated when the SOURCE= specifier is used. Note that when allocating an array the array
shape is not taken from the source expression but must be specified in the usual way. If the source expression is an
array, it must have the same shape as the array being allocated.

For example,

CLASS(*) ,POINTER :: a,b

ALLOCATE (a, SOURCE=b)

The allocated variable A will be a “clone” of B, whatever the current type of B happens to be.

67.4 Type-bound procedures [5.1]

Type-bound procedures provide a means of packaging operations on a type with the type itself, and also for dynamic
dispatch to a procedure depending on the dynamic type of a polymorphic variable.

67.4.1 The type-bound procedure part

The type-bound procedure part of a type definition is separated from the components by the CONTAINS statement.
The default accessibility of type-bound procedures is public even if the components are private; this may be changed
by using the PRIVATE statement after the CONTAINS.

67.4.2 Specific type-bound procedures

The syntax of a specific, non-deferred, type-bound procedure declaration is:
PROCEDURE [[,binding-attr-list]::] binding-name [=>procedure-name]

The name of the type-bound procedure is binding-name, and the name of the actual procedure which implements it is
procedure-name. If the optional =>procedure-name is omitted, the actual procedure has the same name as the binding.

A type-bound procedure is invoked via an object of the type, e.g.
CALL variable(i)%tbp(arguments)

Normally, the invoking variable is passed as an extra argument, the “passed-object dummy argument”; by default
this is the first dummy argument of the actual procedure and so the first argument in the argument list becomes the
second argument, etc. The passed-object dummy argument may be changed by declaring the type-bound procedure
with the PASS (argument-name) attribute, in which case the variable is passed as the named argument. The PASS
attribute may also be used to confirm the default (as the first argument), and the NOPASS attribute prevents passing
the object as an argument at all. The passed-object dummy argument must be a polymorphic scalar variable of that
type, e.g. CLASS(t) self.

When a type is extended, the new type either inherits or overrides each type-bound procedure of the old type. An
overriding procedure must be compatible with the old procedure; in particular, each dummy argument must have the
same type except for the passed-object dummy argument which must have the new type. A type-bound procedure
that is declared to be NON_OVERRIDABLE cannot be overridden during type extension.

When a type-bound procedure is invoked, it is the dynamic type of the variable which determines which actual
procedure to call.

The other attributes that a type-bound procedure may have are PUBLIC, PRIVATE, and DEFERRED (the latter only for
abstract types, which are described later).

Page 107

Fortran 2003 Extensions

67.4.3 Generic type-bound procedures

A generic type-bound procedure is a set of specific type-bound procedures, in the same way that an ordinary generic
procedure is a set of specific ordinary procedures. It is declared with the GENERIC statement, e.g.

GENERIC :: generic_name => specific_name_1, specific_name_2, specific_name_3
Generic type-bound procedures may also be operators or assignment, e.g.
GENERIC :: OPERATOR(+) => add_t_t, add_t_r, add_r_t
Such type-bound generic operators cannot have the NOPASS attribute; the dynamic type of the passed-object dummy

argument determines which actual procedure is called.

When a type is extended, the new type inherits all the generic type-bound procedures without exception, and the
new type may extend the generic with additional specific procedures. To override procedures in the generic, simply
override the specific type-bound procedure. For example, in

TYPE mycomplex

CONTAINS
PROCEDURE :: myc_plus_r => mycl_plus_r
PROCEDURE,PASS(B) :: r_plus_myc => r_plus_mycl

GENERIC :: OPERATOR(+) => myc_plus_r, r_plus_myc
END TYPE

TYPE,EXTENDS (mycomplex) :: mycomplex_2
CONTAINS
PROCEDURE :: myc_plus_r => myc2_plus_r

PROCEDURE,PASS(B) :: r_plus_myc => r_plus_myc2
END TYPE

the type mycomplex_2 inherits the generic operator ‘+’; invoking the generic (+) invokes the specific type-bound proce-
dure, which for entities of type mycomplex_2 will invoke the overriding actual procedure (myc2_plus_r or r_plus myc2).

67.5 Abstract derived types [5.1]

An extensible derived type can be declared to be ABSTRACT, e.g.

TYPE, ABSTRACT :: mytype
An abstract type cannot be instantiated; i.e. it is not allowed to declare a non-polymorphic variable of abstract type,
and a polymorphic variable of abstract type must be allocated to be a non-abstract extension of the type.
Abstract type may contain DEFERRED type-bound procedures, e.g.

CONTAINS

PROCEDURE (interface_name) ,DEFERRED :: tbpname

No binding (“=> name”) is allowed or implied by a deferred procedure binding. The interface name must be the

name of an abstract interface or a procedure with an explicit interface, and defines the interface of the deferred
type-bound procedure.

When extending an abstract type, the extended type must also be abstract unless it overrides all of the deferred
type-bound procedures with normal bindings.

Page 108

Fortran 2003 Extensions

67.6 Object-bound procedures [5.2]

These are procedure pointer components, and act similarly to type-bound procedures except that the binding is
per-object not per-type. The syntax of a procedure pointer component declaration is:

PROCEDURE([proc-interface]) , proc-component-attr-spec-list :: proc-decl-list
where

e each proc-component-attr-spec is one of NOPASS, PASS, PASS (arg-name), POINTER, PRIVATE or PUBLIC, and

e cach proc-decl is a component name optionally followed by default initialisation to null (‘=> NULL()’).

The POINTER attribute is required.

Note that object-bound procedures have a passed-object dummy argument just like type-bound procedures; if this is not
wanted, the NOPASS attribute must be used (and this is required if the interface is implicit, i.e. when proc-interface
is missing or is a type specification).

The following example demonstrates using a list of subroutines with no arguments.

TYPE action_list
PROCEDURE () ,NOPASS,POINTER :: action => NULL(Q)
TYPE(action_1list) ,POINTER :: next

END TYPE

TYPE(t) ,TARGET :: top

TYPE(t) ,POINTER :: p

EXTERNAL subl,sub2

toplaction = subl

ALLOCATE (top’next)

top/nextaction = sub2

p => top
DO WHILE (ASSOCIATED(p))
IF (ASSOCIATED(p%action)) CALL pjaction

p => plnext
END DO

68 ALLOCATABLE extensions

In Fortran 2003 the ALLOCATABLE attribute is permitted not just on local variables but also on components, dummy
variables, and function results. These are the same as described in the ISO Technical Report ISO/IEC TR 15581:1999.

Also, the MOVE_ALLOC intrinsic subroutine has been added, as well as automatic reallocation on assignment.

68.1 Allocatable Dummy Arrays [4.x]

A dummy argument can be declared to be an allocatable array, e.g.

SUBROUTINE s (dum)
REAL,ALLOCATABLE :: dum(:,:)

END SUBROUTINE

Having an allocatable dummy argument means that there must be an explicit interface for any reference: i.e. if the
procedure is not an internal or module procedure there must be an accessible interface block in any routine which
references that procedure.

Page 109

Fortran 2003 Extensions

Any actual argument that is passed to an allocatable dummy array must itself be an allocatable array; it must also
have the same type, kind type parameters, and rank. For example:

REAL,ALLOCATABLE :: x(:,:)
CALL s(x)

The actual argument need not be allocated before calling the procedure, which may itself allocate or deallocate the
argument. For example:

PROGRAM example2
REAL,ALLOCATABLE :: x(:,:)
OPEN(88,FILE="myfile’ ,FORM="unformatted’)
CALL read_matrix(x,88)
1
. process x in some way
!
REWIND (88)
CALL write_and_delete_matrix(x,88)
END
!
MODULE module
CONTAINS
1
! This procedure reads the size and contents of an array from an
! unformatted unit.
1
SUBROUTINE read_matrix(variable,unit)
REAL,ALLOCATABLE, INTENT(OUT) :: variable(:,:)
INTEGER, INTENT(IN) :: unit
INTEGER diml,dim2
READ (unit) diml,dim2
ALLOCATE (variable(dimi,dim2))
READ(unit) variable
CLOSE(unit)
END SUBROUTINE
1
! This procedures writes the size and contents of an array to an
! unformatted unit, and then deallocates the array.
1
SUBROUTINE write_and_delete_matrix(variable,unit)
REAL,ALLOCATABLE, INTENT (INOUT) :: variable(:,:)
INTEGER, INTENT(IN) :: unit
WRITE(unit) SIZE(variable,1),SIZE(variable,2)
WRITE(unit) variable
DEALLOCATE (variable)
END SUBROUTINE
END

68.2 Allocatable Function Results [4.x]

The result of a function can be declared to be an allocatable array, e.g.

FUNCTION af() RESULT(res)
REAL,ALLOCATABLE :: res

On invoking the function, the result variable will be unallocated. It must be allocated before returning from the
function. For example:

Page 110

Fortran 2003 Extensions

!

! The result of this function is the original argument with adjacent

! duplicate entries deleted (so if it was sorted, each element is unique).
1

FUNCTION compress(array)
INTEGER,ALLOCATABLE :: compress(:)
INTEGER, INTENT(IN) :: array(:)

IF (SIZE(array,1)==0) THEN
ALLOCATE (compress(0))
ELSE
N=1
DO I=2,SIZE(array,1)
IF (array(I)/=array(I-1)) N =N + 1
END DO
ALLOCATE (compress (N))
N=1
compress(1l) = array(1)
DO I=2,SIZE(array,1)
IF (array(I)/=compress(N)) THEN
N=N+1
compress(N) = array(I)
END IF
END DO
END IF
END

The result of an allocatable array is automatically deallocated after it has been used.

68.3 Allocatable Structure Components [4.x]

A structure component can be declared to be allocatable, e.g.

MODULE matrix_example
TYPE MATRIX
REAL,ALLOCATABLE :: value(:,:)
END TYPE
END MODULE

An allocatable array component is initially not allocated, just like allocatable array variables. On exit from a procedure
containing variables with allocatable components, all the allocatable components are automatically deallocated. This
is in contradistinction to pointer components, which are not automatically deallocated. For example:

SUBROUTINE sub(n,m)
USE matrix_example
TYPE(matrix) a,b,c
!

! a)ivalue, blvalue and cvalue are all unallocated at this point.
!

ALLOCATE(a%value(n,m) ,b%value(n,m))
!

. do some computations, then
1

RETURN
!

! Returning from the procedure automatically deallocates a%value, b%value,

! and cY%value (if they are allocated).
!

END

Page 111

Fortran 2003 Extensions

Deallocating a variable that has an allocatable array component deallocates the component first; this happens recur-
sively so that all ALLOCATABLE subobjects are deallocated with no memory leaks.

Any allocated allocatable components of a function result are automatically deallocated after the result has been used.

PROGRAM deallocation_example
TYPE inner
REAL,ALLOCATABLE :: ival(:)
END TYPE
TYPE outer

TYPE (inner) ,ALLOCATABLE :: ovalue(:)
END TYPE

TYPE (outer) x
!

! At this point, xJovalue is unallocated
!

ALLOCATE (x%ovalue (10))
!

! At this point, x%ovalue(i)’ival are unallocated, i=1,10
|

ALLOCATE (x%ovalue (2) %ival (1000) ,x%ovalue(5)%ival (9999))
!

! Only x%ovalue(2)%ival and xjovalue(5)%ival are allocated
!

DEALLOCATE (x%ovalue)
!

! This has automatically deallocated x%ovalue(2)%ival and x’ovalue(5)%ival
!

END

In a structure constructor for such a type, the expression corresponding to an allocatable array component can be

e the NULL() intrinsic, indicating an unallocated array,
e an allocatable array which may be allocated or unallocated, or

e any other array expression, indicating an allocated array.

SUBROUTINE constructor_example

USE matrix_example

TYPE(matrix) a,b,c

REAL :: array(10,10) =1

REAL,ALLOCATABLE :: alloc_array(:,:)

a = matrix(NULL())

!

! At this point, alvalue is unallocated

!

b = matrix(array*2)

!

! Now, bvalue is a (10,10) array with each element equal to 2.
!

¢ = matrix(alloc_array)
!
!
1

! Now, c)value is unallocated (because alloc_array was unallocated).

Intrinsic assignment of such types does a “deep copy” of the allocatable array components; it is as if the allocatable
array component were deallocated (if necessary), then if the component in the expression was allocated, the variable’s
component is allocated to the right size and the value copied.

Page 112

Fortran 2003 Extensions

SUBROUTINE assignment_example
USE matrix_example
TYPE(matrix) a,b
!

! First we establish a value for a
!

ALLOCATE (a%value(10,20))
a%value(3,:) = 30

!

! And a value for b

!

ALLOCATE (b%value(1,1))

bYvalue = 0

Now the assignment

|
1

!
b=a
!

! The old contents of bY%value have been deallocated, and b¥%value now has
! the same size and contents as ajvalue.

1

END

68.4 Allocatable Component Example

This example shows the definition and use of a simple module that provides polynomial arithmetic. To do this it
makes use of intrinsic assignment for allocatable components, the automatically provided structure constructors and
defines the addition (+) operator. A more complete version of this module would provide other operators such as
multiplication.

!
! Module providing a single-precision polynomial arithmetic facility
!
MODULE real_poly_module
!
! Define the polynomial type with its constructor.
! We will use the convention of storing the coefficients in the normal
! order of highest degree first, thus in an N-degree polynomial, COEFF(1)
! is the coefficient of X*xN, COEFF(N) is the coefficient of X**1, and
! COEFF(N+1) is the scalar.
I
TYPE,PUBLIC :: real_poly
REAL,ALLOCATABLE :: coeff(:)
END TYPE
I
PUBLIC OPERATOR(+)
INTERFACE OPERATOR(+)
MODULE PROCEDURE rp_add_rp,rp_add_r,r_add_rp
END INTERFACE
!
CONTAINS
TYPE(real_poly) FUNCTION rp_add_r(poly,real)
TYPE(real_poly) ,INTENT(IN) :: poly
REAL,INTENT(IN) :: real
INTEGER isize
IF (.NOT.ALLOCATED(poly’coeff)) STOP ’Undefined polynomial value in +’
isize = SIZE(polylcoeff,1)
rp_add_rYcoeff (isize) = polylcoeff(isize) + real

Page 113

Fortran 2003 Extensions

END FUNCTION
TYPE(real_poly) FUNCTION r_add_rp(real,poly)
TYPE(real_poly) ,INTENT(IN) :: poly
REAL,INTENT(IN) :: real
r_add_rp = rp_add_r(poly,real)
END FUNCTION
TYPE(real_poly) FUNCTION rp_add_rp(polyl,poly2)
TYPE(real_poly) ,INTENT(IN) :: polyl,poly2
INTEGER I,N,N1,N2
IF (.NOT.ALLOCATED(polyl¥%coeff) .0OR..NOT.ALLOCATED (poly2j,coeff)) &
STOP ’Undefined polynomial value in +’
! Set N1 and N2 to the degrees of the input polynomials
N1 = SIZE(polyllcoeff) - 1
N2 = SIZE(poly2lcoeff) - 1
! The result polynomial is of degree N
N = MAX(N1,N2)
ALLOCATE (rp_add_rpY%coeff (N+1))
DO I=0,MIN(N1,N2)
rp_add_rplcoeff (N-I+1) = polyllcoeff(N1-I+1) + poly2icoeff (N2-I+1)
END DO
! At most one of the next two DO loops is ever executed
DO I=N1+1,N
rp_add_rplcoeff (N-I+1)
END DO
DO I=N2+1,N
rp_add_rplcoeff (N-I+1)
END DO
END FUNCTION

END MODULE
1

poly2jcoeff (N2-I+1)

polyllicoeff (N1-I+1)

! Sample program

!

PROGRAM example
USE real_poly_module
TYPE(real_poly) p,q,r

p = real_poly((/1.0,2.0,4.0/)) I x**2 + 2x + 4
q = real_poly((/1.0,-5.5/)) ! x - 5.5
r=p+q ! xx*x2 + 3x - 1.5

print 1,’The coefficients of the answer are:’,rjcoeff
1 format(1x,A,3F8.2)
END

When executed, the above program prints:

The coefficients of the answer are: 1.00 3.00 -1.50

68.5 The MOVE_ALLOC intrinsic subroutine [5.2]

This subroutine moves an allocation from one allocatable variable to another. This can be used to expand an allocatable
array with only one copy operation, and allows full control over where in the new array the values should go. For
example:

REAL,ALLOCATABLE :: a(:),tmp(:)
ALLOCATE(a(n))

! Here we want to double the size of A, without losing any of the values
! that are already stored in it.

Page 114

Fortran 2003 Extensions

ALLOCATE (tmp(size(a)*2))

tmp(l:size(a)) = a

CALL move_alloc(from=tmp,to=a)

! TMP is now deallocated, and A has the new size and values.

To have the values end up somewhere different, just change the assignment statement, for example to move them all
to the end:

tmp(size(a)+l:size(a)*2) = a

68.6 Allocatable scalars [5.2]

The ALLOCATABLE attribute may now be applied to scalar variables and components, not just arrays. This is most
useful in conjunction with polymorphism (CLASS) and/or deferred type parameters (e.g. CHARACTER(:)); for more
details see the “Typed allocation”, “Sourced allocation” and “Automatic reallocation” sections.

68.7 Automatic reallocation [5.2]

If, in an assignment to a whole allocatable array, the expression being assigned is an array of a different size or shape,
the allocatable array is reallocated to have the correct shape (in Fortran 95 this assignment would have been an error).
For example:

ALLOCATE (a(10))

a= (/ (i,i=1,100) /)
I A is now size 100

Similarly, if an allocatable variable has a deferred type parameter (these are described in a later section), and is either
unallocated or has a value different from that of the expression, the allocatable variable is reallocated to have the
same value for that type parameter. This allows for true varying-length character variables:

CHARACTER(:) ,ALLOCATABLE :: name
name = ’John Smith’
! LEN(name) is now 10, whatever it was before.

name = 7’
! LEN(name) is now 1.

Note that since a subobject of an allocatable object is not itself allocatable, this automatic reallocation can be
suppressed by using substrings (for characters) or array sections (for arrays), e.g.

name(:) = ’7?’ ! Normal assignment with truncation/padding.
a(:) = (/ (1,i=1,100) /) ! Asserts that A is already of size 100.

69 Other data-oriented enhancements

69.1 Parameterised derived types [6.0 for kind type parameters, 6.1 for length]

Derived types may now have type parameters. Like those of the intrinsic types, they come in two flavours: ”kind”-like
ones which must be known at compile time (called “kind” type parameters), and ones like character length which may
vary at runtime (called “length” type parameters).

Page 115

Fortran 2003 Extensions

69.1.1 Basic Syntax and Semantics

A derived type which has type parameters must list them in the type definition, give them a type, and specify whether
they are “kind” or “length” parameters. For example,

TYPE real_matrix(kind,n,m)
INTEGER,KIND :: kind
INTEGER(int64) ,LEN :: n,m

All type parameters must be explicitly specified to be of type INTEGER, but the kind of integer may vary. Type
parameters are always scalar, never arrays. Within the type definition, “kind” type parameters may be used in
constant expressions, and any type parameter may be used in a specification expression (viz array bound, character
length, or “length” type parameter value). For example, the rest of the above type definition might look like:

REAL(kind) value(n,m)
END TYPE real_matrix

When declaring entities of such a derived type, the type parameters must be given after the name. For example,
TYPE(real_matrix(KIND(0d0),100,200)) :: my_real_matrix_variable
Similarly, the type parameters must be given when constructing values of such a type; for example,

my_real_matrix_variable = &
real_matrix(kind(0d40),100,200) ((/ (i*1.0d0,i=1,20000) /))

To examine the value of a derived type parameter from outside the type definition, the same notation is used as for
component accesses, e.g.

print *,’Columns =’,my_real_matrix_variable’m

Thus type parameter names are in the same class as component names and type-bound procedure names. However,
a type parameter cannot be changed by using its specifier on the left-hand-side of an assignment. Furthermore, the
intrinsic type parameters may also be examined using this technique, for example:

REAL :: array(:,:)
CHARACTER(*) , INTENT(IN) :: ch
PRINT *,array%kind,chilen

prints the same values as for KIND (array) and LEN(ch). Note that a kind parameter enquiry is always scalar, even if
the object is an array.

A derived type parameter does not actually have to be used at all within the type definition, and a kind type parameter
might only be used within specification expressions. For example,

TYPE fixed_byte(n)
INTEGER,KIND :: n
INTEGER(1) :: value(n)

END TYPE

TYPE numbered_object(object_number)
INTEGER,LEN :: object_number

END TYPE

Even though the fixed byte parameter n is not used in a constant expression, a constant value must always be
specified for it because it has been declared to be a “kind” type parameter. Similarly, even though object_number
has not been used at all, a value must always be specified for it. This is not quite as useless as it might seem: each
numbered_object has a single value for object _number even if the numbered_object is an array.

Page 116

Fortran 2003 Extensions

69.1.2 More Semantics

A derived type with type parameters can have default values for one or more of them; in this case the parameters
with default values may be omitted from the type specifiers. For example,

TYPE char_with_maxlen(maxlen,kind)
INTEGER,LEN :: maxlen = 254

INTEGER,KIND :: kind = SELECTED_CHAR_KIND(’ascii’)
INTEGER :: len =0
CHARACTER (len=maxlen,kind=kind) :: value

END TYPE

TYPE(char_with_maxlen) temp
TYPE(char_with_maxlen(80)) card(1000)
TYPE(char_with_maxlen(kind=SELECTED_CHAR_KIND(’iso 10646°))) ucs4_temp

Note that although kind type parameters can be used in constant expressions and thus in default initialisation,
components that are variable-sized (because they depend on length type parameters) cannot be default-initialised at
all. Thus value in the example above cannot be default-initialised.

Further note that unlike intrinsic types, there are no automatic conversions for derived type assignment with different
type parameter values, thus given the above declarations,

card(1) = card(2) ! This is ok, maxlen==80 for both sides.
temp = card ! This is not allowed - maxlen 254 vs. maxlen 80.

69.1.3 Assumed type parameters

Assumed type parameters for derived types work similarly to character length, except that they are only allowed for
dummy arguments (not for named constants). For example, the following subroutine works on any char_with maxlen
variable.

SUBROUTINE stars(x)
TYPE(char_with_maxlen(*)) x
x%hvalue = REPEAT(’*’,x%maxlen)

END SUBROUTINE

69.1.4 Deferred type parameters

Deferred type parameters are completely new to Fortran 2003; these are available both for CHARACTER and for param-
eterised derived types, and work similarly to deferred array bounds. A variable with a deferred type parameter must
have the ALLOCATABLE or POINTER attribute. The value of a deferred type parameter for an allocatable variable is that
determined by allocation (either by a typed allocation, or by an intrinsic assignment with automatic reallocation).
For a pointer, the value of a deferred type parameter is the value of the type parameter of its target. For example,
using the type real matrix defined above,

TYPE(real_matrix(KIND(0.0),100,200)),TARGET :: x
TYPE(real_matrix(KIND(0.0),:,:)),POINTER :: y, z
ALLOCATE(real_matrix(KIND(0.0),33,44) :: y) ! Typed allocation.

z => X ! Assumes from the target.
PRINT *,y%n,z%n ! Prints 33 and 100.

Note that it is not allowed to reference the value of a deferred type parameter of an unallocated allocatable or of a
pointer that is not associated with a target.

If a dummy argument is allocatable or a pointer, the actual argument must have deferred exactly the same type
parameters as the dummy. For example,

Page 117

Fortran 2003 Extensions

SUBROUTINE sub(rm_dble_ptr)
TYPE(real_matrix (KIND(0dO),*,:)),POINTER :: rm_dble_ptr

TYPE(real _matrix(KIND(0d0),100,200)),POINTER :: x
TYPE(real_matrix(KIND(0d0),100,:)),POINTER :: y

TYPE (real_matrix (KIND(0dO),:,:)),POINTER :: z

CALL sub(x) ! Invalid - X%M is not deferred (but must be).
CALL sub(y) ! This is ok.

CALL sub(z) ! Invalid - X%N is deferred (but must not be).

69.2 Finalisation [5.3]

An extensible derived type can have “final subroutines” associated with it; these subroutines are automatically called
whenever an object of the type is about to be destroyed, whether by deallocation, procedure return, being on the
left-hand-side of an intrinsic assignment, or being passed to an INTENT (OUT) dummy argument.

A final subroutine of a type must be a subroutine with exactly one argument, which must be an ordinary dummy
variable of that type (and must not be INTENT(OUT)). It may be scalar or an array, and when an object of that type
is destroyed the final subroutine whose argument has the same rank as the object is called. The final subroutine may
be elemental, in which case it will handle any rank of object that has no other subroutine handling it. Note that if
there is no final subroutine for the rank of an object, no subroutine will be called.

Final subroutines are declared in the type definition after the CONTAINS statement, like type-bound procedures. They
are declared by a FINAL statement, which has the syntax

FINAL [:: | name [, name]...

where each name is a subroutine that satisfies the above rules.

A simple type with a final subroutine is as follows.

TYPE flexible_real_vector
LOGICAL :: value_was_allocated = .FALSE.
REAL,POINTER :: value(:) => NULL(Q)
CONTAINS
FINAL destroy_frv
END TYPE

ELEMENTAL SUBROUTINE destroy_frv(x)
TYPE(flexible_real_vector) ,INTENT(INOUT) :: x
IF (x%value_was_allocated) DEALLOCATE(x%value)

END SUBROUTINE

If an object being destroyed has finalisable components, any final subroutine for the object-as-a-whole will be called
before finalising any components. If the object is an array, each component will be finalised separately (and any final
subroutine called will be the one for the rank of the component, not the rank of the object).

For example, in

TYPE many_vectors
TYPE(flexible_real_vector) scalar
TYPE(flexible_real_vector) array(2,3)

CONTAINS
FINAL :: destroy_many_vectors_1

END TYPE

SUBROUTINE destroy_many_vectors_1(arrayl)

TYPE (many_vectors) arrayl(:)
PRINT *,’Destroying a’,SIZE(arrayl),’element array of many vectors’

Page 118

Fortran 2003 Extensions

END SUBROUTINE
TYPE (many_vector) mv_object(3)

when mv_object is destroyed, firstly ‘destroy many vectors_1’ will be called with mv_object as its argument; this
will print

Destroying a 3 element array of many vectors

Secondly, for each element of the array, both the scalar and array components will be finalised by calling destroy _frv
on each of them. These may be done in any order (or, since they are elemental, potentially in parallel).

Note that final subroutines are not inherited through type extension; instead, when an object of extended type is
destroyed, first any final subroutine it has will be called, then any final subroutine of the parent type will be called on
the parent component, and so on.

69.3 The PROTECTED attribute [5.0]

The PROTECTED attribute may be specified by the PROTECTED statement or with the PROTECTED keyword in a type
declaration statement. It protects a module variable against modification from outside the module.

69.3.1 Syntax

The syntax of the PROTECTED statement is:
PROTECTED | :: | name [, name] ...

The PROTECTED attribute may only be specified for a variable in a module.

69.3.2 Semantics

Variables with the PROTECTED attribute may only be modified within the defining module. Outside of that module
they are not allowed to appear in a variable definition context (e.g. on the left-hand-side of an assignment statement),
similar to INTENT(IN) dummy arguments.

This allows the module writer to make the values of some variables generally available without relinquishing control
over their modification.

69.3.3 Example

MODULE temperature_module
REAL,PROTECTED :: temperature_c = 0, temperature_f = 32
CONTAINS
SUBROUTINE set_temperature_c(new_value_c)
REAL,INTENT(IN) :: new_value_c
temperature_c = new_value_c
temperature_f = temperature_c*(9.0/5.0) + 32
END SUBROUTINE
SUBROUTINE set_temperature_f (new_value_f)
REAL,INTENT(IN) :: new_value_f
temperature_f = new_value_f
temperature_c = (temperature_f - 32)*(5.0/9.0)
END SUBROUTINE
END

The PROTECTED attribute allows users of temperature _module to read the temperature in either Farenheit or Celsius,
but the variables can only be changed via the provided subroutines which ensure that both values agree.

Page 119

Fortran 2003 Extensions

69.4 Pointer enhancements
69.4.1 INTENT for pointers [5.1]

A POINTER dummy argument may now have the INTENT attribute. This attribute applies to the pointer association
status, not to the target of the pointer.

An INTENT(IN) pointer can be assigned to, but cannot be pointer-assigned, nullified, allocated or deallocated. An
INTENT (OUT) pointer receives an undefined association status on entry to the procedure. An INTENT (INOUT) pointer
has no restrictions on its use, but the actual argument must be a pointer variable, not a pointer function reference.

69.4.2 Pointer bounds specification [5.2]

The bounds of a pointer can be changed (from the default) in a pointer assignment by including them on the left-
hand-side. For example,

REAL,TARGET :: x(-100:100,-10:10)
REAL,POINTER :: p(:,:)
p(l:,1:) => x

The upper bound is formed by adding the extent (minus 1) to the lower bound, so in the above example, the bounds
of P will be 1:201,1:21. Note that when setting the lower bound of any rank in a pointer assignment, the values
must be explicitly specified (there is no default of 1 like there is in array declarators) and they must be specified for
all dimensions of the pointer.

69.4.3 Rank-remapping Pointer Assignment [5.0]

This feature allows a multi-dimensional pointer to point to a single-dimensional object. For example:

REAL,POINTER :: diagonal(:),matrix(:,:),base(:)

ALLOCATE (base (n*n))
matrix(1l:n,1:n) => base
diagonal => base(::n+1)
]

! DIAGONAL now points to the diagonal elements of MATRIX.
!

Note that when rank-remapping, the values for both the lower and upper bounds must be explicitly specified for all
dimensions, there are no defaults.

69.5 Individual component accessibility [5.1]

It is now possible to set the accessibility of individual components in a derived type. For example,

TYPE t
LOGICAL, PUBLIC :: flag
INTEGER, PRIVATE :: state
END TYPE

The structure constructor for the type is not usable from outside the defining module if there is any private component
that is not inherited, allocatable or default-initialised (see Structure constructor syntax enhancements).

Page 120

Fortran 2003 Extensions

69.6 Public entities of private type [5.1]

It is now possible to export entities (named constants, variables, procedures) from a module even if they have private
type or (for procedures) have arguments of private type. For example,

MODULE m
TYPE, PRIVATE :: hidden_type
CHARACTER(6) :: code
END TYPE
TYPE(hidden_type), PUBLIC, PARAMETER :: code_green = hidden_type(’green’)
TYPE(hidden_type), PUBLIC, PARAMETER :: code_yellow = hidden_type(’yellow’)
TYPE(hidden_type), PUBLIC, PARAMETER :: code_red = hidden_type(’red’)
END

70 C interoperability [mostly 5.1]

70.1 The ISO_C_BINDING module

The intrinsic module ISO_C_BINDING contains

e for each C type (e.g. float), a named constant for use as a KIND parameter for the corresponding Fortran
type,

e types C_PTR and C_FUNPTR for interoperating with C object pointers and function pointers,

e procedures for manipulating Fortran and C pointers.

70.1.1 The kind parameters

The kind parameter names are for using with the corresponding Fortran types; for example, INTEGER for integral
types and REAL for floating-point types. This is shown in the table below. Note that only c_int is guaranteed to be
available; if there is no compatible type the value will be negative.

Page 121

Fortran 2003 Extensions

C type
_Bool
char

double

double _Complex
float
float _Complex
int
intl6_t
int32_t
int64_t
int8_t
int_fastl6_t
int_fast32_t
int_fast64_t
int_fast8_t
int_leastl16_t
int_least32_t
int_least64_t
int_least8_t
intmax_t
intptr_t
long
long double

Fortran type and kind

LOGICAL(c_bool)

CHARACTER (c_char) — For characters as text.
REAL(c_double)

COMPLEX (c_double_complex) or COMPLEX (c_double)
REAL(c_float)

COMPLEX (c_float_complex) or COMPLEX (c_float)
INTEGER(c_int)

INTEGER (c_int16_t)

INTEGER (c_int32_t)

INTEGER(c_int64_t)

INTEGER(c_int8_t)
INTEGER(c_int_fast16_t)

INTEGER (c_int_fast32_t)

INTEGER (c_int_fast64_t)

INTEGER (c_int_fast8_t)
INTEGER(c_int_least16_t)
INTEGER(c_int_least32_t)
INTEGER(c_int_least64_t)
INTEGER(c_int_least8_t)

INTEGER (c_intmax_t)

INTEGER (c_intptr_t)

INTEGER (c_long)

REAL(c_long_double)

long double _Complex COMPLEX(c_long double_complex) or COMPLEX(c_long double)
long long INTEGER (c_long_long)
short INTEGER (c_short)
signed char INTEGER (c_signed_char) — For characters as integers.
size_t INTEGER (c_size_t)

70.1.2 Using C_PTR and C_FUNPTR

These are derived type names, so you use them as Type(c_ptr) and Type(c_funptr). Type(c_ptr) is essentially
equivalent to the C void *;i.e. it can contain any object pointer. Type(c_funptr) does the same thing for function
pointers.

For C arguments like ‘int *’, you don’t need to use Type(c_ptr), you can just use a normal dummy argument (in
this case of type Integer(c_int)) without the VALUE attribute. However, for more complicated pointer arguments
such as pointer to pointer, or for variables or components that are pointers, you need to use Type (c_ptr).

Null pointer constants of both Type(c_ptr) and Type(c_funptr) are provided: these are named C_NULL_PTR and
C_NULL_FUNPTR respectively.

To create a Type(c_ptr) value, the function C_.LOC(X) is used on a Fortran object X (and X must have the TARGET
attribute). Furthermore, the Fortran object cannot be polymorphic, a zero-sized array, an assumed-size array, or an
array pointer. To create a Type (c_funptr) value, the function C_FUNLOC is used on a procedure; this procedure must
have the BIND(C) attribute.

To test whether a Type (c_ptr) or Type (c_funptr) is null, the C_ASSOCIATED (C_PTR_1) function can be used; it returns
.TRUE. if and only if C_.PTR_1 is not null. Two Type(c_ptr) or two Type(c_funptr) values can be compared using
C_ASSOCIATED(C_PTR_1,C_PTR_2) function; it returns .TRUE. if and only if C_PTR_1 contains the same C address as
C_PTR_2.

The subroutine C_F_POINTER(CPTR,FPTR) converts the TYPE(C_PTR) value CPTR to the scalar Fortran pointer FPTR;
the latter can have any type (including non-interoperable types) but must not be polymorphic. The subroutine
C_F_POINTER(CPTR,FPTR,SHAPE) converts a TYPE(C_PTR) value into the Fortran array pointer FPTR, where SHAPE is
an integer array of rank 1, with the same number of elements as the rank of FPTR; the lower bounds of the resultant
FPTR will all be 1.

The subroutine C_F_PROCPOINTER(CPTR,FPTR) is provided. This converts the TYPE(C_FUNPTR) CPTR to the Fortran
procedure pointer FPTR.

Page 122

Fortran 2003 Extensions

Note that in all the conversion cases it is up to the programmer to use the correct type and other information.

70.2 BIND(C) types

Derived types corresponding to C struct types can be created by giving the type the BIND(C) attribute, e.g.
TYPE,BIND(C) :: mytype

The components of a BIND(C) type must have types corresponding to C types, and cannot be pointers or allocatables.
Furthermore, a BIND(C) type cannot be a SEQUENCE type (it already acts like a SEQUENCE type), cannot have type-
bound procedures, cannot have final procedures, and cannot be extended.

70.3 BIND(C) variables

Access to C global variables is provided by giving the Fortran variable the BIND(C) attribute. Such a variable can
only be declared in a module, and cannot be in a COMMON block. By default, the C name of the variable is the Fortran
name converted to all lowercase characters; a different name may be specified with the NAME= clause, e.g.

INTEGER,BIND(C,NAME="StrangelyCapiTalisedCName") :: x

Within Fortran code, the variable is referred to by its Fortran name, not its C name.

70.4 BIND(C) procedures

A Fortran procedure that can be called from C can be defined using the BIND(C) attribute on the procedure heading.
By default its C name is the Fortran name converted to lowercase; a different name may be specified with the NAME=
clause. For example

SUBROUTINE sub() BIND(C,NAME=’Sub’)

Again, the C name is for use only from C, the Fortran name is used from Fortran. If the C name is all blanks (or a
zero-length string), there is no C name. Such a procedure can still be called from C via a procedure pointer (i.e. by
assigning it to a TYPE(C_FUNPTR) variable).

A BIND(C) procedure must be a module procedure or external procedure with an explicit interface; it cannot be an
internal procedure or statement function.

A BIND(C) procedure may be a subroutine or a scalar function with a type corresponding to a C type. Each dummy
argument must be a variable whose type corresponds to a C type, and cannot be allocatable, assumed-shape, optional
or a pointer. If the dummy argument does not have the VALUE attribute, it corresponds to a C dummy argument that
is a pointer.

Here is an example of a Fortran procedure together with its reference from C:

SUBROUTINE find_minmax(x,n,max,min) BIND(C,NAME=’FindMinMax’)
USE iso_c_binding
REAL(c_double) x(*),max,min
INTEGER(c_int) ,VALUE :: n
INTRINSIC maxval,minval
max = MAXVAL(x(:n))
min = MINVAL(x(:n))
END

extern void FindMinMax(double *x,int n,double *maxval,double *minval);
double x[100],xmax,xmin;

Page 123

Fortran 2003 Extensions

int n;
FindMinMax (x,n,&xmax,&xmin) ;

This also allows C procedures to be called from Fortran, by describing the C procedure to be called in an interface
block. Here is an example:

/* This is the prototype for a C library function from 4.3BSD. */
int getloadavg(double loadavgl[],int nelem);

PROGRAM show_loadavg
USE iso_c_binding
INTERFACE
FUNCTION getloadavg(loadavg,nelem) BIND(C)
IMPORT c_double,c_int
REAL(c_double) loadavg(*)
INTEGER(c_int) ,VALUE :: nelem
INTEGER(c_int) getloadavg
END FUNCTION
END INTERFACE
REAL(c_double) averages(3)
IF (getloadavg(averages,3)/=3) THEN
PRINT *,’Unexpected error’
ELSE
PRINT *,’Load averages:’,averages
END IF
END

70.5 Enumerations

An enumeration defines a set of integer constants of the same kind, and is equivalent to the C enum declaration. For
example,

ENUM,BIND(C)
ENUMERATOR :: open_door=4, close_door=17
ENUMERATOR :: lock_door

END ENUM

is equivalent to
enum {
open_door=4, close_door=17, lock_door
3
If a value is not given for one of the enumerators, it will be one greater than the previous value (or zero if it is the

first enumerator in the list). The kind used for a particular set of enumerators can be discovered by using the KIND
intrinsic on one of the enumerators.

Note that the BIND(C) clause is required; the standard only defines enumerations for interoperating with C.

71 IEEE arithmetic support [4.x except as otherwise noted]

71.1 Introduction

Three intrinsic modules are provided to support use of IEEE arithmetic, these are: TEEE_ARITHMETIC, IEEE EXCEPTIONS
and IEEE FEATURES. This extension is small superset of the one described by the ISO Technical Report ISO/TEC TR
15580:1999.

Page 124

Fortran 2003 Extensions

71.2 Exception flags, modes and information flow

The model of IEEE arithmetic used by Fortran 2003 is that there is a global set of flags that indicate whether
particular floating-point exceptions (such as overflow) have occurred, several operation modes which affect floating-
point operations and exception handling, and a set of rules for propagating the flags and modes to obtain good
performance and reliability.

The propagation rule for the exception flags is that the information “flows upwards”. Thus each procedure starts
with the flags clear, and when it returns any flag that is set will cause the corresponding flag in the caller to become
set. This ensures that procedures that can be executed in parallel will not interfere with each other via the IEEE
exception flags. When the computer hardware only supports a single global set of flags, this model needs enforcement
on in procedures that themselves examine the flags (by IEEE_GET _FLAG or IEEE GET_STATUS).

The propagation rule for modes, is that the mode settings “flow downwards”. This enables code motion optimisations
within all routines, and the only cost is that procedures which modify the modes must restore them (to the state on
entry) when they return.

The modes that are available are:

e separately, whether each floating point exception terminates the program or allows execution to continue (pro-
viding a default result and raising an exception flag);

e rounding mode for floating-point operations;

e underflow mode.

71.3 Procedures in the modules

All the procedures provided by these modules are generic procedures, and not specific: that means that they cannot
be passed as actual arguments.

The function IEEE_SELECTED_REAL KIND, and all the functions whose names begin with IEEE_SUPPORT_, are permitted
to appear in specification and constant expressions (as long as the arguments are appropriate for the context). The
elemental functions are also permitted to appear in specification expressions, but not constant expressions.

In the descriptions of the procedures, where it says REAL(*) it means any kind of REAL (this is not standard Fortran
syntax). Conversely, where it says LOGICAL it means default LOGICAL only, not any other kind of LOGICAL.

The functions whose names begin ‘TEEE_SUPPORT_’ are all enquiry functions. Many of these take a REAL(*) argument
X; only the kind of X is used by the enquiry function, so X is permitted to be undefined, unallocated, disassociated, or
an undefined pointer.

Note that a procedure must not be invoked on a data type that does not support the feature the procedure uses; the
“support” enquiry functions can be used to detect this.

71.4 The IEEE FEATURES module

This module defines the derived type IEEE FEATURES_TYPE, and up to 11 constants of that type representing IEEE
features: these are as follows.

IEEE_DATATYPE whether any IEEE datatypes are available
IEEE DENORMAL whether IEEE subnormal values are available*
IEEE DIVIDE whether division has the accuracy required by IEEE*
IEEE HALTING whether control of halting is supported
IEEE_INEXACT FLAG whether the inexact exception is supported*
IEEE_INF whether IEEE positive and negative infinities are available*
IEEE_INVALID_FLAG whether the invalid exception is supported™
IEEE NAN whether IEEE NaNs are available*
IEEE_ROUNDING whether all IEEE rounding modes are available*
IEEE_SQRT whether SQRT conforms to the IEEE standard*
IEEE_UNDERFLOW_FLAG whether the underflow flag is supported™

Page 125

Fortran 2003 Extensions

(*) for at least one kind of REAL.

Those feature types which are required by the user procedure should be explicitly referenced by the USE statement
with an ONLY clause, e.g.

USE, INTRINSIC :: IEEE_FEATURES,ONLY:IEEE_SQRT

This ensures that if the feature specified is not available the compilation will fail.

The type IEEE_FEATURES_TYPE is not in itself useful.

71.5 IEEE EXCEPTIONS

Provides data types, constants and generic procedures for handling IEEE floating-point exceptions.

71.5.1 Types and constants

TYPE IEEE_STATUS_TYPE
Variables of this type can hold a floating-point status value; it combines all the mode settings and flags.
TYPE IEEE_FLAG_TYPE

Values of this type specify individual IEEE exception flags; constants for these are available as follows.

IEEE DIVIDE BY_ZERO division by zero flag
IEEE_INEXACT inexact result flag
IEEE_INVALID invalid operation flag

IEEE_OVERFLOW overflow flag
IEEE_UNDERFLOW underflow flag

In addition, two array constants are available for indicating common combinations of flags:

TYPE (IEEE_FLAG_TYPE) ,PARAMETER :: &
IEEE_USUAL(3) = (/ IEEE_DIVIDE_BY_ZERO,IEEE_INVALID,IEEE_OVERFLOW /), &
IEEE_ALL(5) = (/ IEEE_DIVIDE_BY_ZERO,IEEE_INVALID,IEEE_OVERFLOW, &
IEEE_UNDERFLOW, IEEE_INEXACT /)

71.5.2 Procedures

The procedures provided by IEEE_EXCEPTIONS are as follows.

ELEMENTAL SUBROUTINE IEEE_GET_FLAG(FLAG,FLAG_VALUE)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG
LOGICAL,INTENT(OUT) :: FLAG_VALUE

Sets FLAG_VALUE to .TRUE. if the exception flag indicated by FLAG is currently set, and to .FALSE. otherwise.

ELEMENTAL SUBROUTINE IEEE_GET_HALTING_MODE(FLAG,HALTING)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG
LOGICAL,INTENT(OUT) :: HALTING

Sets HALTING to .TRUE. if the program will be terminated on the occurrence of the floating-point exception designated
by FLAG, and to .FALSE. otherwise.

Page 126

Fortran 2003 Extensions

PURE SUBROUTINE IEEE_GET_STATUS(STATUS_VALUE)
TYPE(IEEE_STATUS_TYPE) , INTENT(OUT) :: STATUS_VALUE

Sets STATUS_VALUE to the current floating-point status; this contains all the current exception flag and mode settings.

PURE SUBROUTINE IEEE_SET_FLAG(FLAG,FLAG_VALUE)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG
LOGICAL,INTENT(IN) :: FLAG_VALUE

Sets the exception flag designated by FLAG to FLAG_VALUE. FLAG may be an array of any rank, as long as it has no
duplicate values, in which case FLAG_VALUE may be scalar or an array with the same shape.

PURE SUBROUTINE IEEE_SET_HALTING_MODE(FLAG,HALTING)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG
LOGICAL,INTENT(IN) :: HALTING

Sets the halting mode for the exception designated by FLAG to HALTING. FLAG may be an array of any rank, as long as
it has no duplicate values, in which case HALTING may be scalar or an array with the same shape.

PURE SUBROUTINE IEEE_SET_STATUS(STATUS_VALUE)
TYPE(IEEE_STATUS_TYPE) ,INTENT(IN) :: STATUS_VALUE

Sets the floating-point status to that stored in STATUS_VALUE. This must have been previously obtained by calling
IEEE_GET_STATUS.

PURE LOGICAL FUNCTION IEEE_SUPPORT_FLAG(FLAG)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG

Returns whether the exception flag designated by FLAG is supported for all kinds of REAL.

PURE LOGICAL FUNCTION IEEE_SUPPORT_FLAG(FLAG,X)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG
REAL(*) ,INTENT(IN) :: X

Returns whether the exception flag designated by FLAG is supported for REAL with the kind of X.

PURE LOGICAL FUNCTION IEEE_SUPPORT_HALTING(FLAG)
TYPE(IEEE_FLAG_TYPE) ,INTENT(IN) :: FLAG

Returns whether control of the “halting mode” for the exception designated by FLAG is supported.

71.6 IEEE ARITHMETIC module

Provides additional functions supporting IEEE arithmetic: it includes the entire contents of IEEE_EXCEPTIONS.

71.6.1 IEEE datatype selection

The IEEE_SELECTED_REAL KIND function is similar to the SELECTED_REAL _KIND intrinsic function, but selects among
IEEE-compliant REAL types ignoring any that are not compliant.

Page 127

Fortran 2003 Extensions

71.6.2 Enquiry functions

PURE LOGICAL FUNCTION IEEE_SUPPORT_DATATYPE(Q)
Returns whether all real variables X satisfy the conditions for IEEE_SUPPORT _DATATYPE (X).

PURE LOGICAL FUNCTION IEEE_SUPPORT_DATATYPE(X)
REAL(*) ,INTENT(IN) :: X

Returns whether variables with the kind of X satisfy the following conditions:

e the numbers with absolute value between TINY(X) and HUGE(X) are exactly those of an IEEE floating-point
format;

e the +, - and * operations conform to IEEE for at least one rounding mode;

e the functions IEEE_COPY_SIGN, IEEE_LOGB, IEEE_NEXT_AFTER, IEEE NEXT_DOWN, IEEE_NEXT_UP, IEEE_REM, IEEE_SCALB
and IEEE_UNORDERED may be used.

PURE LOGICAL FUNCTION IEEE_SUPPORT_DENORMAL ()

PURE LOGICAL FUNCTION IEEE_SUPPORT_DENORMAL (X)
REAL(*) ,INTENT(IN) :: X

Returns whether for all real kinds, or variables with the kind of X, subnormal values (with absolute value between zero
and TINY) exist as required by IEEE and operations on them conform to IEEE.

PURE LOGICAL FUNCTION IEEE_SUPPORT_DIVIDE()

PURE LOGICAL FUNCTION IEEE_SUPPORT_DIVIDE(X)
REAL(*) ,INTENT(IN) :: X

Returns whether intrinsic division (/) conforms to IEEE, for all real kinds or variables with the kind of X respectively.

PURE LOGICAL FUNCTION IEEE_SUPPORT_INF(Q)

PURE LOGICAL FUNCTION IEEE_SUPPORT_INF(X)
REAL (*) ,INTENT(IN) :: X

Returns whether for all real kinds, or variables with the kind of X, positive and negative infinity values exist and
behave in conformance with IEEE.

PURE LOGICAL FUNCTION IEEE_SUPPORT_IO(Q)

PURE LOGICAL FUNCTION IEEE_SUPPORT_IO(X)
REAL (%) ,INTENT(IN) :: X

[5.2] Returns whether for all real kinds, or variables with the kind of X, conversion to and from text during formatted
input/output conforms to IEEE, for the input/output rounding modes ROUND="DOWN’, *NEAREST’, *UP’ and ’ZERQ’
(and the corresponding edit descriptors RD, RN, RU and RZ).

PURE LOGICAL FUNCTION IEEE_SUPPORT_NAN(Q)

PURE LOGICAL FUNCTION IEEE_SUPPORT_NAN(X)
REAL (%) ,INTENT(IN) :: X

Page 128

Fortran 2003 Extensions

Returns whether for all real kinds, or variables with the kind of X, positive and negative “Not-a-Number” values exist
and behave in conformance with TEEE.

PURE LOGICAL FUNCTION IEEE_SUPPORT_ROUNDING (ROUND_VALUE)
TYPE (IEEE_ROUND_TYPE) , INTENT(IN) :: ROUND_VALUE

PURE LOGICAL FUNCTION IEEE_SUPPORT_ROUNDING (ROUND_VALUE,X)
TYPE(IEEE_ROUND_TYPE) , INTENT(IN) :: ROUND_VALUE
REAL (%) ,INTENT(IN) :: X

Returns whether for all real kinds, or variables with the kind of X, the rounding mode designated by ROUND_VALUE may
be set using IEEE_SET_ROUNDING_MODE and conforms to IEEE.

PURE LOGICAL FUNCTION IEEE_SUPPORT_SQRT()

PURE LOGICAL FUNCTION IEEE_SUPPORT_SQRT(X)
REAL(*) ,INTENT(IN) :: X

Returns whether the intrinsic function SQRT conforms to IEEE, for all real kinds or variables with the kind of X
respectively.

PURE LOGICAL FUNCTION IEEE_SUPPORT_SUBNORMAL()

PURE LOGICAL FUNCTION IEEE_SUPPORT_SUBNORMAL(X)
REAL(*) ,INTENT(IN) :: X

[7.0] Returns whether for all real kinds, or variables with the kind of X, subnormal values (with absolute value between
zero and TINY) exist as required by IEEE and operations on them conform to IEEE. This function is from Fortran
2018.

PURE LOGICAL FUNCTION IEEE_SUPPORT_STANDARD()

PURE LOGICAL FUNCTION IEEE_SUPPORT_STANDARD (X)
REAL(*) ,INTENT(IN) :: X

Returns whether for all real kinds, or variables with the kind of X, all the facilities described by the IEEE modules
except for input/output conversions (see IEEE_SUPPORT_I0) are supported and conform to IEEE.

PURE LOGICAL FUNCTION IEEE_SUPPORT_UNDERFLOW_CONTROL ()

PURE LOGICAL FUNCTION IEEE_SUPPORT_UNDERFLOW_CONTROL (X)
REAL(*) ,INTENT(IN) :: X

[5.2] Returns whether for all real kinds, or variables with the kind of X, the underflow mode can be controlled with
IEEE_SET_UNDERFLOW_MODE.

71.6.3 Rounding mode
TYPE IEEE_ROUND_TYPE

Values of this type specify the IEEE rounding mode. The following predefined constants are provided.

IEEE DOWN round down (towards minus infinity)
IEEE NEAREST round to nearest (ties to even)
IEEE_TO_ZERO round positive numbers down, negative numbers up
IEEEUP round up (towards positive infinity)
IEEE OTHER any other rounding mode

Page 129

Fortran 2003 Extensions

PURE SUBROUTINE IEEE_GET_ROUNDING_MODE(ROUND_VALUE)
TYPE(IEEE_ROUND_TYPE) , INTENT(OUT) :: ROUND_VALUE

Set ROUND_VALUE to the current rounding mode.

PURE SUBROUTINE IEEE_SET_ROUNDING_MODE(ROUND_VALUE)
TYPE(IEEE_ROUND_TYPE) , INTENT(IN) :: ROUND_VALUE

Set the rounding mode to that designated by ROUND_VALUE.

71.6.4 Underflow mode

The underflow mode is either “gradual underflow” as specified by the IEEE standard, or “abrupt underflow”.

With gradual underflow, the space between -~TINY (X) and TINY(X) is filled with equally-spaced “subnormal” numbers;
the spacing of these numbers is equal to the spacing of model numbers above TINY(X) (and equal to the smallest
subnormal number). This gradually reduces the precision of the numbers as they get closer to zero: the smallest
number has only one bit of precision, so any calculation with such a number will have a very large relative error.

With abrupt underflow, the only value between -TINY(X) and TINY(X) is zero. This kind of underflow is nearly
universal in non-IEEE arithmetics and is widely provided by hardware even for IEEE arithmetic. Its main advantage
is that it can be much faster.

SUBROUTINE IEEE_GET_UNDERFLOW_MODE (GRADUAL)
LOGICAL,INTENT(OUT) :: GRADUAL

Sets GRADUAL to .TRUE. if the current underflow mode is gradual underflow, and to .FALSE. if it is abrupt underflow.

SUBROUTINE IEEE_SET_UNDERFLOW_MODE (GRADUAL)
LOGICAL,INTENT(IN) :: GRADUAL

Sets the underflow mode to gradual underflow if GRADUAL is .TRUE., and to abrupt underflow if it is .FALSE..

71.6.5 Number Classification
TYPE IEEE_CLASS_TYPE

Values of this type indicate the IEEE class of a number; this is equal to one of the provided constants:

TEEE_NEGATIVE_DENORMAL
IEEE_NEGATIVE_INF
IEEE_NEGATIVE_NORMAL
IEEE_NEGATIVE_ZERO
IEEE_POSITIVE_DENORMAL
IEEE_POSITIVE_INF
IEEE_POSITIVE_NORMAL
TEEE_POSITIVE_ZERO
IEEE_QUIET_NAN
IEEE_SIGNALING_NAN

[5.2] IEEE_OTHER_VALUE

negative subnormal number z, in the range —TINY (z) <2z <0
—o0 (negative infinity)

negative normal number z, in the range —HUGE (z) <z <—-TINY(z)
—0 (zero with the sign bit set)

positive subnormal number z, in the range 0<x<TINY(z)
+oo (positive infinity)

positive normal number z, in the range TINY (z) <x<HUGE(z)
+0 (zero with the sign bit clear)

Not-a-Number (usually the result of an invalid operation)
Not-a-Number which raises the invalid signal on reference
any value that does not fit one of the above categories

[7.0] The constants IEEE_POSITIVE_SUBNORMAL and IEEE_NEGATIVE_SUBNORMAL, from Fortran 2018, are also provided;
they have the same values as IEEE_POSITIVE DENORMAL and IEEE_NEGATIVE DENORMAL respectively.

The comparison operators .EQ. (=) and .NE. (/=) are provided for comparing values of this type.

ELEMENTAL TYPE(IEEE_CLASS_TYPE) FUNCTION IEEE_CLASS(X)

REAL (%) , INTENT (IN)

Page 130

0 X

Fortran 2003 Extensions

returns the classification of the value of X.

ELEMENTAL REAL(*) FUNCTION IEEE_VALUE(X,CLASS)
REAL(*) ,INTENT(IN) :: X
TYPE(IEEE_CLASS_TYPE) ,INTENT(IN) :: CLASS

Returns a “sample” value with the kind of X and the classification designated by CLASS.

71.6.6 Test functions

The following procedures are provided for testing IEEE values.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_FINITE(X)
REAL(*) ,INTENT(IN) :: X

Returns whether X is “finite”, i.e. not an infinity, NaN, or IEEE_0THER_VALUE.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_NAN(X)
REAL(*) ,INTENT(IN) :: X

Returns whether X is a NaN.

ELEMENTAL LOGICAL FUNCTION IEEE_IS_NEGATIVE(X)
REAL(*) ,INTENT(IN) :: X

Returns whether X is negative; it differs the comparison X<0 only in the case of negative zero, where it returns . TRUE..

ELEMENTAL LOGICAL FUNCTION IEEE_UNORDERED(X,Y)
REAL (%) ,INTENT(IN) :: X,Y

Returns the value of ‘IEEE_IS_NAN(X) .OR. IEEE_IS_NAN(Y)’.

71.6.7 Arithmetic functions

ELEMENTAL REAL(*) FUNCTION IEEE_COPY_SIGN(X,Y)
REAL (*) ,INTENT(IN) :: X,Y

Returns X with the sign bit of Y.

ELEMENTAL REAL(*) FUNCTION IEEE_LOGB(X)
REAL(*) ,INTENT(IN) :: X

If X is zero, returns —oo if infinity is supported and -HUGE (X) otherwise. For nonzero X, returns EXPONENT (X) -1

ELEMENTAL REAL(*) FUNCTION IEEE_NEXT_AFTER(X,Y)
REAL (*) ,INTENT(IN) :: X,Y

Returns the nearest number to X that is closer to Y, or X if X and Y are equal. If the result is subnormal, IEEE_UNDERFLOW
is signalled. If the result is infinite but X was finite, IEEE_OVERFLOW is signalled.

ELEMENTAL REAL(*) FUNCTION IEEE_NEXT_DOWN(X)
REAL(*) ,INTENT(IN) :: X

Page 131

Fortran 2003 Extensions

[7.0] Returns the nearest number to X that is less than it, unless X is —oo or NaN, in which case if X is a signalling
NaN a quiet NaN is returned, otherwise X is returned. No exception is signalled unless X is a signalling NaN.

ELEMENTAL REAL(*) FUNCTION IEEE_NEXT_UP(X)
REAL(*) ,INTENT(IN) :: X

[7.0] Returns the nearest number to X that is greater than it, unless X is +00 or NaN, in which case if X is a signalling
NaN a quiet NaN is returned, otherwise X is returned. No exception is signalled unless X is a signalling NaN.

ELEMENTAL REAL(*) FUNCTION IEEE_REM(X,Y)
REAL (%) ,INTENT(IN) :: X,Y

Returns the exact remainder resulting from the division of X by Y.

ELEMENTAL REAL(*) FUNCTION IEEE_RINT(X)
REAL(*) ,INTENT(IN) :: X

Returns X rounded to an integer according to the current rounding mode.

ELEMENTAL REAL(x) FUNCTION IEEE_SCALB(X,I)
REAL (%) ,INTENT(IN) :: X
INTEGER (%) , INTENT(IN) :: I

Returns SCALE(X,I), i.e. X*2/, without computing 27 separately.

72 Input/output Features

72.1 Stream input/output [5.1]

A stream file is a file that is opened with the ACCESS=’>STREAM’ specifier. A stream file is either a formatted stream
or an unformatted stream.

A formatted stream file is equivalent to a C text stream; this acts much like an ordinary sequential file, except that
there is no limit on the length of a record. Just as in C, when writing to a formatted stream, an embedded newline
character in the data causes a new record to be created. The new intrinsic enquiry function NEW_LINE(A) returns this
character for the kind (character set) of A; if the character set is ASCII, this is equal to TACHAR(10). For example,

OPEN(17,FORM=’formatted’ ,ACCESS=’stream’ ,STATUS=’"new’)
WRITE(17,’(A)’), ’This is record 1.’//NEW_LINE(’A’)//’This is record 2.’

An unformatted stream file is equivalent to a C binary stream, and has no record boundaries. This makes it impossible
to BACKSPACE an unformatted stream. Data written to an unformatted stream is transferred to the file with no
formatting, and data read from an unformatted stream is transferred directly to the variable as it appears in the file.

When reading or writing a stream file, the POS= specifier may be used to specify where in the file the data is to be
written. The first character of the file is at position 1. The POS= specifier may also be used in an INQUIRE statement,
in which case it returns the current position in the file. When reading or writing a formatted stream, the P0S= in a
READ or WRITE shall be equal to 1 (i.e. the beginning of the file) or to a value previously discovered through INQUIRE.

Note that unlike unformatted sequential files, writing to an unformatted stream file at a position earlier than the end
of the file does not truncate the file. (However, this truncation does happen for formatted streams.)

Finally, the STREAM= specifier has been added to the INQUIRE statement. This specifier takes a scalar default character
variable, and assigns it the value ’YES”’ if the file may be opened for stream input/output (i.e. with ACCESS=’STREAM’),
the value *NQ if the file cannot be opened for stream input/output, and the value >UNKNOWN if it is not known whether
the file may be opened for stream input/output.

Page 132

Fortran 2003 Extensions

72.2 The BLANK= and PAD= specifiers [5.1]

The BLANK= and PAD= specifiers, which previously were only allowed on an OPEN statement (and INQUIRE), are now
allowed on a READ statement. These change the BLANK= or PAD= mode for the duration of that READ statement only.

72.3 Decimal Comma [5.1]

It is possible to read and write numbers with a decimal comma instead of a decimal point. Support for this is provied
by the DECIMAL= specifier and the DC and DP edit descriptors. The DECIMAL= specifier may appear in OPEN, READ, WRITE
and INQUIRE statements; possible values are *POINT’ (the default) and >COMMA’. For an unconnected or unformatted
unit, INQUIRE returns >UNDEFINED’. The DC edit descriptor temporarily sets the mode to DECIMAL="COMMA’, and the
DP edit descriptor temporarily sets the mode to DECIMAL="POINT’.

When the mode is DECIMAL="COMMA’, all floating-point output will produce a decimal comma instead of a decimal
point, and all floating-point input will expect a decimal comma. For example,

PRINT ’(1X,"Value cest ",DC,F0.2)’,1.25
will produce the output
Value cest 1,25

Additionally, in this mode, a comma cannot be used in list-directed input to separate items; instead, a semi-colon may
be used.

72.4 The DELIM= specifier [5.1]

The DELIM= specifier, which previously was only allowed on an OPEN statement (and INQUIRE), is now allowed on a
WRITE statement. It changes the DELIM= mode for the duration of that WRITE statement; note that this only has any
effect if the WRITE statement uses list-directed or namelist output. For example,

WRITE(*,*,DELIM=’QUOTE’) "That’s all folks!"
will produce the output

’That’’s all folks!’

72.5 The ENCODING= specifier [5.1]

The ENCODING= specifier is permitted on OPEN and INQUIRE statements. Standard values for this specifier are *UTF-8’
and the default value of DEFAULT’; the >UTF-8’ value is only allowed on compilers that support a Unicode character
kind (see SELECTED_CHAR_KIND). This release of the NAG Fortran Compiler supports *DEFAULT’ and ’ASCII’.

72.6 The IOMSG= specifier [5.1]

The I0MSG= specifier has been added to all input/output statements. This takes a scalar default character variable,
which in the event of an error is assigned an explanatory message. (Note that this is only useful if the statement
contains an I0STAT= or ERR= specifier, otherwise the program will be terminated on error anyway.) If no error occurs,
the value of the variable remains unchanged.

72.7 The IOSTAT= specifier [5.1]

This now accepts any kind of integer variable (previously this was required to be default integer).

Page 133

Fortran 2003 Extensions

72.8 The SIGN= specifier [5.1]

The SIGN= specifier has been added to the OPEN, WRITE and INQUIRE statements; possible values are ’PLUS’, > SUPPRESS’
and *PROCESSOR_DEFINED’ (the default). For the NAG Fortran Compiler, SIGN=’PROCESSOR_DEFINED’ has the same
effect as SIGN=’>SUPPRESS’.

The effect of SIGN="PLUS’ is the same as the SP edit descriptor, the effect of SIGN=>SUPPRESS’ is the same as the SS
edit descriptor, and the effect of SIGN=>PROCESSOR_DEFINED’ is the same as the S edit descriptor.

72.9 Intrinsic functions for testing IOSTAT= values [5.1]

The intrinsic functions IS_IOSTAT _END and IS_IOSTAT_EOR test IOSTAT= return values, determining whether a value
indicates an end-of-file condition or an end-of-record condition. These are equivalent to testing the I0STAT= return
value against the named constants IOSTAT_END and IOSTAT_EOR respectively; these constants are available through the
ISO_FORTRAN_ENV module.

72.10 Input/output of IEEE infinities and NaNs [5.1]

Input and output of IEEE infinities and NaNs is possible: the output format is

e -Infinity (or -Inf if it will not fit) for negative infinity;
e Infinity (or Inf if it will not fit) for positive infinity, or +Infinity (or +Inf) with SP or SIGN=’PLUS’ mode;

e NaN for a NaN.

Furthermore, the output is right-justified within the output field. For list-directed output the output field is the
minimum size to hold the result.

Input of IEEE infinities and NaNs is now possible; these take the same form as the output described above, except
that:

e case is not significant,
e a NaN may be preceded by a sign, which is ignored, and

e a NaN may be followed by alphanumeric characters enclosed in parentheses (the NAG Fortran Compiler also
ignores these).

The result of reading a NaN value in NAG Fortran is always a quiet NaN, never a signalling one.

72.11 Output of floating-point zero [5.1]

List-directed and namelist output of floating-point zero is now done using F format instead of E format. (The Fortran
90 and 95 standards both specified E format.)

72.12 NAMELIST and internal files [5.1]

Namelist input/output is now permitted to/from internal files.

72.13 Variables permitted in NAMELIST

All variables except for assumed-size arrays are now permitted to appear in a namelist group [6.0 for allocatable and
pointer, 5.3.1 for the rest]. Note that an allocatable variable that appears in a namelist group must be allocated, and
a pointer variable that appears in a namelist group must be associated, when a READ or WRITE statement with that
namelist is executed. Also, if a variable is polymorphic or has an ultimate component that is allocatable or a pointer,
it is only permitted in a namelist when it will be processed by defined input/output (see below).

Page 134

Fortran 2003 Extensions

72.14 Recursive input/output [5.2]

Input/output to internal files is now permitted while input/output to another internal file or an external file is in
progress. This occurs when a function in an input/output list executes an internal file READ or WRITE statement.

Input/output to an external file while external file input/output is already in progress remains prohibited, except for
the case of nested data transfer (see “Defined input/output”).

72.15 Asynchronous input/output
72.15.1 Basic syntax [5.1]

Asynchronous input/output syntax is accepted; this consists of the ASYNCHRONOUS= specifier on OPEN, READ, WRITE
and INQUIRE, the ID= specifier on READ, WRITE and INQUIRE, and the PENDING= specifier on INQUIRE.

Except for the INQUIRE statement, the ASYNCHRONOUS= specifier takes a scalar default character expression; this must
evaluate either to *YES’ or ’NO’, treating lowercase the same as uppercase. In the READ and WRITE statements, this
character expression must be a constant expression, and the statement must refer to an external file whose connection
allows asynchronous input/output; if ASYNCHRONOUS=’YES’ is specified, the data transfer may occur asynchronously.
In the OPEN statement, this specifier determines whether asynchronous data transfer is allowed for that file: the default
setting is ’NO’. For the INQUIRE statement, the ASYNCHRONOUS= specifier takes a scalar default character variable, and
sets it to ’*YES’ if the file is currently connected for asynchronous input/output, N0’ if the current connection does
not allow asynchronous input/output and *UNKNOWN’ if the file is not connected.

For the READ and WRITE statements, the ID= specifier takes a scalar integer variable. This specifier is only permitted if
ASYNCHRONQUS=’YES’ also appears. The integer variable is assigned the “identifier” of the asynchronous data transfer
that the READ or WRITE initiates; this value can be used in INQUIRE and WAIT statements to track the progress of the
asynchronous data transfer.

For the INQUIRE statement, the ID= specifier takes a scalar integer expression whose value must be that returned from
ID= on a READ or WRITE statement for that file, and is only permitted in conjunction with the PENDING= specifier.
The PENDING= specifier takes a scalar default logical variable and sets it to .TRUE. if the specified asynchronous data
transfer is still underway and to .FALSE. if it has completed. If PENDING= is used without ID=, the enquiry is about
all outstanding asynchronous data transfer on that file.

After initiating an asynchronous data transfer, the variables affected must not be referenced or defined until after the
transfer is known to have finished. For an asynchronous WRITE of a local variable, this means not returning from the
procedure until after ensuring the transfer is complete. An asynchronous data transfer is known to have been finished
if there is a subsequent synchronous data transfer, an INQUIRE statement which returns .FALSE. for PENDING=, or a
WAIT statement has been executed; in each case, for that file.

72.15.2 Basic Example

The following example uses two buffers, buf1 and buf2, alternately reading into one while processing the other, while
there is still data in the file to process (each dataset being followed by a single logical value which indicates whether
more is to come).

REAL :: bufil(n,m),buf2(n,m)
LOGICAL more,stillwaiting
READ (unit) bufl
DO
READ (unit) more ! Note: synchronous
IF (more) READ (unit,ASYNCHRONQUS=’YES’) buf2
CALL process(bufl)
IF (.NOT.more) EXIT
READ (unit) more ! Note: synchronous
IF (more) READ (unit,ASYNCHRONOUS=’YES’) buf1l
CALL process(buf2)
IF (.NOT.more) EXIT

Page 135

Fortran 2003 Extensions

END DO

Note that the synchronous READ statements automatically “wait” for any outstanding asynchronous data transfer to
complete before reading the logical value; this ensures that the dataset will have finished being read into its buffer
and is safe to process.

72.15.3 The ASYNCHRONOUS attribute [5.2]

A READ or WRITE statement with ASYNCHRONOUS="YES’ automatically gives the ASYNCHRONOUS attribute to any variable
that appears in its input/output list, in a SIZE= specifier, or which is part of a namelist specified by NML=. This
is adequate for asynchronous data transfers that initiate and complete within a single procedure. However, it is
inadequate for transfers to/from module variables or dummy arguments if the procedure returns while the transfer is
still underway.

The ASYNCHRONOUS attribute may be explicitly specified in a type declaration statement or in an ASYNCHRONQUS
statement. The latter has the syntax

ASYNCHRONQUS [::] wvariable-name | , variable-name]...

If a variable with the ASYNCHRONQOUS attribute is a dummy array and is not an assumed-shape array or array pointer,
any associated actual argument cannot be an array section, an assumed-shape array or array pointer. Furthermore,
if a dummy argument has the ASYNCHRONQOUS attribute the procedure must have an explicit interface. Both of these
restrictions apply whether the attribute was given explicitly or implicitly.

72.15.4 The WAIT statement [5.2]

The WAIT statement provides the ability to wait for an asynchronous data transfer to finish without performing any
other input/output operation. It has the form

WAIT (wait-spec | , wait-spec ...)
where wait-spec is one of the following:

UNIT = file-unit-number

END = label
EOR = label
ERR = label

ID = scalar-integer-variable
IOMSG = scalar-default-character-variable
IOSTAT = scalar-integer-variable

The UNIT= specifier must appear, but the ‘UNIT =" may be omitted if it is the first specifier in the list. The ID=
specifier takes a scalar integer expression whose value must be that returned from ID= on a READ or WRITE statement
for the file; if the ID= specifier does not appear the WAIT statement refers to all pending asynchronous data transfer
for that file.

On completion of execution of the WAIT statement the specified asynchronous data transfers have been completed. If
the specified file is not open for asynchronous input/output or is not connected, the WAIT statement has no effect (it
is not an error unless the ID= specifier was used with an invalid value).

Here is an example of using the WAIT statement.

REAL array(1000,1000,10) ,xferid(10)
! Start reading each segment of the array
DO i=1,10
READ (unit,id=xfer(i)) array(:,:,i)
END DO

Page 136

Fortran 2003 Extensions

! Now process each segment of the array
DO i=1,10

WAIT (unit,id=xfer(i))

CALL process(array(:,:,1i)
END DO

72.15.5 Execution Semantics

At this time all actual input/output operations remain synchronous, as allowed by the standard.

72.16 Scale factor followed by repeat count [5.1]

The comma that was previously required between a scale factor (nP) and a repeat count (e.g. the ‘3’ in 3E12.2), is
now optional. This trivial extension was part of Fortran 66 that was removed in Fortran 77, and reinstated in Fortran
2003.

72.17 FLUSH statement [5.2]

Execution of a FLUSH statement causes the data written to a specified file to be made available to other processes,
or causes data placed in that file by another process to become available to the program. The syntax of the FLUSH
statement is similar to the BACKSPACE, ENDFILE and REWIND statements, being one of the two possibilities

FLUSH file-unit-number
FLUSH (flush-spec | , flush-spec]...)

where file-unit-number is the logical unit number (a scalar integer expression), and flush-spec is one of the following:

UNIT = file-unit-number

IOSTAT = scalar-integer-variable

I0MSG = scalar-default-character-variable
ERR = label

The UNIT= specifier must appear, but the ‘UNIT =" may be omitted if it is the first flush-spec in the list.

Here is an example of the use of a FLUSH statement.

WRITE (pipe) my_data
FLUSH (pipe)

72.18 Defined input/output [6.2]

The generic identifiers READ (FORMATTED), READ (UNFORMATTED), WRITE(FORMATTED) and WRITE(UNFORMATTED) pro-
vide the ability to replace normal input/output processing for an item of derived type. In the case of formatted
input/output, the replacement will occur for list-directed formatting, namelist formatting, and for an explicit for-
mat with the DT edit descriptor: it does not affect any other edit descriptors in an explicit format. Using defined
input/output, it is possible to perform input/output on derived types containing pointer components and allocatable
components, since the user-defined procedure will be handling it.

Here is a type definition with defined input/output procedures.
TYPE tree
TYPE(tree_node) ,POINTER :: first

CONTAINS
PROCEDURE :: fmtread=>tree_fmtread

Page 137

Fortran 2003 Extensions

PROCEDURE :: fmtwrite=>tree_fmtwrite
GENERIC,PUBLIC :: READ(formatted)=>fmtread, WRITE(formatted)=>fmtwrite
END TYPE

Given the above type definition, whenever a TYPE(tree) object is an effective item in a formatted input/output list,
the module procedure tree_fmtread will be called (in a READ statement) or the module procedure tree_fmtwrite will
be called (in a WRITE statement) to perform the input or output of that object. Note that a generic interface block
may also be used to declare procedures for defined input/output; this is the only option for sequence or BIND(C) types
but is not recommended for extensible types.

The procedures associated with each input/output generic identifier must have the same characteristics as the ones
listed below, where type-declaration is CLASS (derived-type-spec) for an extensible type and TYPE (derived-type-spec) for
a sequence or BIND(C) type. Note that if the derived type has any length type parameters, they must be “assumed”
(specified as ‘*’).

SUBROUTINE formatted read(var,unit,iotype,vlist,iostat,iomsg)
type-declaration ,INTENT (INOUT) :: var

INTEGER,INTENT(IN) :: wunit

CHARACTER(*) ,INTENT(IN) :: iotype

INTEGER,INTENT(IN) :: wvlist(:)

INTEGER,INTENT(OUT) :: iostat

CHARACTER(*) ,INTENT(INQUT) :: iomsg

SUBROUTINE unformatted read(var,unit,iostat,iomsg)
type-declaration ,INTENT (INOUT) :: var
INTEGER,INTENT(IN) :: wunit

INTEGER, INTENT(OUT) :: iostat
CHARACTER (%) , INTENT(INQUT) :: iomsg

SUBROUTINE formatted write(var,unit,iotype,vlist,iostat,iomsg)
type-declaration ,INTENT (IN) :: var

INTEGER, INTENT(IN) :: wunit

CHARACTER (%) ,INTENT(IN) :: iotype

INTEGER, INTENT(IN) :: vlist(:)

INTEGER, INTENT(OUT) :: iostat

CHARACTER (%) ,INTENT (INOUT) :: iomsg

SUBROUTINE unformatted write(var,unit,iostat,iomsg)
type-declaration ,INTENT (IN) :: var
INTEGER,INTENT(IN) :: wunit

INTEGER,INTENT(OUT) :: iostat

CHARACTER (%) , INTENT (INOUT) :: iomsg

In each procedure, unit is either a normal unit number if the parent input/output statement used a normal unit
number, a negative number if the parent input/output statement is for an internal file, or a processor-dependent
number (which might be negative) for the ‘*’ unit. The iostat argument must be assigned a value before returning
from the defined input/output procedure: either zero to indicate success, the negative number I0STAT_EOR (from the
intrinsic module ISO_FORTRAN_ENV) to signal an end-of-record condition, the negative number IOSTAT_END to signal an
end-of-file condition, or a positive number to indicate an error condition. The iomsg argument must be left alone if
no error occurred, and must be assigned an explanatory message if iostat is set to a nonzero value.

For the formatted input/output procedures, the iotype argument will be set to ‘LISTDIRECTED’ if list-directed format-
ting is being done, ‘NAMELIST’ if namelist formatting is being done, and ‘DT’ concatenated with the character-literal if
the DT edit descriptor is being processed. The vlist argument contains the list of values in the DT edit descriptor if
present, and is otherwise a zero-sized array. Note that the syntax of the DT edit descriptor is:

DT | character-literal | [C value [, value ...)]
where blanks are insignificant, character-literal is a default character literal constant with no kind parameter, and each
value is an optionally signed integer literal constant with no kind parameter. For example, ‘DT, ‘DT”z8,i4,e10.2”’,

‘DT(100,-3,4+4,666)’ and ‘DT”silly example”(0)’ are all syntactically correct DT edit descriptors: it is up to the user-
defined procedure to interpret what they might mean.

Page 138

Fortran 2003 Extensions

During execution of a defined input/output procedure, there must be no input/output for an external unit (other than
for the unit argument), but input/output for internal files is permitted. No file positioning commands are permitted.
For unformatted input/output, all input/output occurs within the current record, no matter how many separate
data transfer statements are executed by the procedure; that is, file positioning both before and after “nested” data
transfer is suppressed. For formatted input/output, this effect is approximately equivalent to the nested data transfer
statements being considered to be nonadvancing; explicit record termination (using the slash (/) edit descriptor, or
transmission of newline characters to a stream file) is effective, and record termination may be performed by a nested
list-directed or namelist input/output statement.

If unit is associated with an external file (i.e. non-negative, or equal to one of the constants ERROR_UNIT, INPUT_UNIT
or OUTPUT_UNIT from the intrinsic module ISO_FORTRAN_ENV), the current settings for the pad mode, sign mode, etc.,
can be discovered by using INQUIRE with PAD=, SIGN=, etc. on the unit argument. If unit is negative (associated
with an internal file), INQUIRE will raise the error condition IOSTAT_INQUIRE_INTERNAL UNIT.

Finally, defined input/output is not compatible with asynchronous input/output; all input/output statements involved
with defined input/output must be synchronous.

73 Miscellaneous Fortran 2003 Features

73.1 Abstract interfaces and the PROCEDURE statement [5.1]

Abstract interfaces have been added, together with the procedure declaration statement. An abstract interface is
defined in an interface block that has the ABSTRACT keyword, i.e.

ABSTRACT INTERFACE

Each interface body in an abstract interface block defines an abstract interface instead of declaring a procedure. The
name of an abstract interface can be used in the procedure declaration statement to declare a specifc procedure with
that interface, e.g.

PROCEDURE (aname) :: specl, spec2

declares SPEC1 and SPEC2 to be procedures with the interface (i.e. type, arguments, etc.) defined by the abstract
interface ANAME.
The procedure declaration statement can also be used with the name of any procedure that has an explicit interface,
e.g.

PROCEDURE(x) y
declares Y to have the same interface as X. Also, procedures with implicit interfaces can be declared by using PROCEDURE
with a type specification instead of a name, or by omitting the name altogether.
The following attributes can be declared at the same time on the procedure declaration statement: BIND(C...),
INTENT (intent), OPTIONAL, POINTER, PRIVATE, PUBLIC, SAVE. For example,

PROCEDURE (aname) ,PRIVATE :: spec3

Note that POINTER declares a procedure pointer (see next section), and that INTENT and SAVE are only allowed for
procedure pointers not for ordinary procedures. The NAG Fortran Compiler also allows the PROTECTED attribute to
be specified on the procedure declaration statement: this is an extension to the published Fortran 2003 standard.

73.2 Named procedure pointers [5.2]

A procedure pointer is a procedure with the POINTER attribute; it may be a named pointer or a structure component
(the latter are described elsewhere). The usual way of declaring a procedure pointer is with the procedure declaration
statement, by including the POINTER clause in that statement: for example,

Page 139

Fortran 2003 Extensions

PROCEDURE (aname) ,POINTER :: p => NULLQ)

declares P to be a procedure pointer with the interface ANAME, and initialises it to be a disassociated pointer.

A named procedure pointer may also be declared by specifying the POINTER attribute in addition to its normal
procedure declaration: for example, a function declared by a type declaration statement will be a function pointer if
the POINTER attribute is included in the type declaration:

REAL, EXTERNAL, POINTER :: funptr

The POINTER statement can also be used to declare a procedure pointer, either in conjunction with an interface
block, an EXTERNAL statement, or a type declaration statement, for example:

INTERFACE
SUBROUTINE sub(a,b)
REAL, INTENT (INOUT) :: a,b
END SUBROUTINE
END INTERFACE
POINTER sub

Procedure pointers may also be stored in derived types as procedure pointer components. The syntax and effects are
slightly different, making them act like “object-bound procedures”, and as such are described in the object-oriented
programming section.

73.3 Intrinsic modules [4.x]

The Fortran 2003 standard classifies modules as either intrinsic or non-intrinsic. A non-intrinsic module is the normal
kind of module (i.e. user-defined); an intrinsic module is one that is provided as an intrinsic part of the Fortran
compiler.

There are five standard modules in Fortran 2003: IEEE_ARITHMETIC, IEEE_EXCEPTIONS, IEEE_.FEATURES,
ISO_C_BINDING and ISO_ FORTRAN_ENV.

A program is permitted to have a non-intrinsic module with the same name as that of an intrinsic module: to this end,
the USE statement has been extended: ‘USE,INTRINSIC ::’ specifies that an intrinsic module is required, whereas
‘USE,NON_INTRINSIC ::’ specifies that a non-intrinsic module is required. If these are not used, the compiler will
select an intrinsic module only if no user-defined module is found. For example,

USE,INTRINSIC :: iso_fortran_env
uses the standard intrinsic module ISO_FORTRAN_ENV, whereas

USE,NON_INTRINSIC :: iso_fortran_env

uses a user-defined module with that name. Note that the double-colon ‘::’ is required if either specifier is used.

73.4 Renaming user-defined operators on the USE statement [5.2]

It is now possible to rename a user-defined operator on the USE statement, similarly to how named entities can be
renamed. For example,

USE my_module, OPERATOR(.localid.)=>0PERATOR(.remotename.)

would import everything from MY_MODULE, but the . REMOTENAME. operator would have its name changed to .LOCALID..

Note that this is only available for user-defined operator names; the intrinsic operators .AND. et al cannot have their
names changed in this way, nor can ASSIGNMENT (=) be renamed. The local name must be an operator if and only if
the remote (module entity) name is an operator: that is, both of

Page 140

Fortran 2003 Extensions

USE my_module, something=>0PERATOR(.anything.)
USE my_module, OPERATOR(.something.)=>anything

are invalid (a syntax error will be produced).

73.5 The ISO_ FORTRAN_ENYV module [5.1]

The standard intrinsic module ISO_FORTRAN_ENV is now available. It contains the following default INTEGER named
constants.

CHARACTER_STORAGE_SIZE
size of a character storage unit in bits.

ERROR_UNIT
logical unit number for error reporting (“stderr”).

FILE_STORAGE_SIZE
size of the file storage unit used by RECL= in bits.

INPUT_UNIT
default (‘*’) unit number for READ.

IOSTAT_END
I0STAT= return value for end-of-file.

IOSTAT_EOR
IOSTAT= return value for end-of-record.

NUMERIC_STORAGE_SIZE
size of a numeric storage unit in bits.

OUTPUT_UNIT
unit used by PRINT, the same as the ‘*’ unit for WRITE.

73.6 The IMPORT statement [5.1]
The IMPORT statement has been added. This has the syntax
IMPORT [[:: | name [, name ...]

and is only allowed in an interface body, where it imports the named entities from the host scoping unit (normally,
these entities cannot be accessed from an interface body). If no names are specified, normal host association rules are
in effect for this interface body.

The IMPORT statement must follow any USE statements and precede all other declarations, in particular, IMPLICIT and
PARAMETER statements. Anything imported with IMPORT must have been declared prior to the interface body.

73.7 Length of names and statements

Names are now ([4.x]) permitted to be 63 characters long (instead of 31), and statements are now ([5.2]) permitted to
have 255 continuation lines (instead of 39).

73.8 Array constructor syntax enhancements

Square brackets ([1) can now ([5.1]) be used in place of the parenthesis-slash pairs ((/ /)) for array constructors.
This allows expressions to be more readable when array constructors are being mixed with ordinary parentheses.

RESHAPE((/(i/2.0,i=1,100)/),(/2,3/)) ! 01d way
RESHAPE([(i/2.0,1i=1,100)],[2,3]) I New way

Page 141

Fortran 2003 Extensions

Array constructors may now ([5.2]) begin with a type specification followed by a double colon (: :); this makes zero-
sized constructors easy (and eliminates potential ambiguity with character length), and also provides assignment
conversions thus eliminating the need to pad all character strings to the same length.

[Logical ::] ! Zero-sized logical array
[Double Precision :: 17.5, 0, 0.1d40] ! Conversions
[Character(200) :: ’Alf’, ’Bernadette’] ! Padded to length 200

73.9 Structure constructor syntax enhancements [5.3]

There are three enhancements that have been made to structure constructors in Fortran 2003:
1. component names can be used as keywords, the same way that dummy argument names can be used as argument
keywords;
2. values can be omitted for components that have default initialisation; and

3. type names can be the same as generic function names, and references are resolved by choosing a suitable function
(if the syntax matches the function’s argument list) and treating as a structure constructor only if no function
matches the actual arguments.

A fourth enhancement is made in the Fortran 2008 standard: a value can be omitted for a component that is allocatable.
This makes structure constructors more like built-in generic functions that can be overridden when necessary. Here is

an example showing all three enhancements.

TYPE quaternion
REAL x=0,ix=0,jx=0,kx=0
END TYPE

INTERFACE quaternion
MODULE PROCEDURE quat_from_complex
END INTERFACE

TYPE(quaternion) FUNCTION quat_from_complex(c) RESULT(r)

COMPLEX c

r¥%x = REAL(c)
rf%y = AIMAG(c)
r4z = 0

r%a = 0

END FUNCTION

COMPLEX c

TYPE(quaternion) q

q = quaternion(3.14159265) ! Structure constructor, value (“pi,0,0,0).

q = quaternion(jx=1) ! Structure constructor, value (0,0,1,0).
q = quaternion(c) ! "Constructor" function quat_from_complex.

Also, if the type is an extended type an ancestor component name can be used to provide a value for all those inherited
components at once.

These extensions mean that even if a type has a private component, you can use the structure constructor if

e the component is allocatable (it will be unallocated),
e the component is default-initialised (it will have the default value), or
e the component is inherited and you use an ancestor component name to provde a value for it and the other

components inherited from that ancestor.

Page 142

Fortran 2003 Extensions

73.10 Deferred character length [5.2]

The length of a character pointer or allocatable variable can now be declared to be deferred, by specifying the length
as a colon: for example,

CHARACTER(LEN=:) ,POINTER :: ch

The length of a deferred-length pointer (or allocatable variable) is determined when it is allocated (see next section)
or pointer-associated; for example

CHARACTER,TARGET :: t1x3,t2*27
CHARACTER(:) ,POINTER :: p

p = ti
PRINT *,LEN(p)
p => t2

PRINT *,LEN(p)

will first print 3 and then 27. It is not permitted to ask for the LEN of a disassociated pointer that has deferred length.

Note that deferred length is most useful in conjunction with the new features of typed allocation, sourced allocation,
scalar allocatables and automatic reallocation.

73.11 The ERRMSG= specifier [5.1]

The ALLOCATE and DEALLOCATE statements now accept the ERRMSG= specifier. This specifier takes a scalar default
character variable, which in the event of an allocation or deallocation error being detected will be assigned an explana-
tory message. If no error occurs the variable is left unchanged. Note that this is useless unless the STAT= specifier is
also used, as otherwise the program will be terminated on error anyway.

For example,

ALLOCATE (w(n) ,STAT=ierror ,ERRMSG=message)

IF (ierror/=0) THEN
PRINT *,’Error allocating W: ’,TRIM(message)
RETURN

END IF

73.12 Intrinsic functions in constant expressions [5.2 partial; 5.3 complete]

It is now allowed to use any intrinsic function with constant arguments in a constant expression. (In Fortran 95 real
and complex intrinsic functions were not allowed.) For example,

MODULE m
REAL,PARAMETER :: e = EXP(1.0)
END

73.13 Specification functions can be recursive [6.2]

A function that is used in a specification expression is now permitted to be recursive (defined with the RECURSIVE
attribute). For example

PURE INTEGER FUNCTION factorial(n) RESULT(x)
INTEGER, INTENT(IN) :: n
IF (n>1) THEN
r = n*xfactorial(n-1)

Page 143

Fortran 2003 Extensions

ELSE
r=1
END TF
END FUNCTION

can now be used in a specification expression. Note that a specification function must not invoke the procedure that
invoked it.

73.14 Access to the command line [5.1]

The intrinsic procedures COMMAND _ARGUMENT_COUNT, GET_COMMAND and GET_COMMAND_ARGUMENT have been added. These
duplicate functionality previously only available via the procedures IARGC and GETARG from the FOO_UNIX_ENV module.

INTEGER FUNCTION command_argument_count ()

Returns the number of command-line arguments. Unlike TARGC in the FOO_UNIX_ENV module, this returns 0 even if
the command name cannot be retrieved.

SUBROUTINE get_command(command,length,status)
CHARACTER (*) ,INTENT(OUT) ,0PTIONAL :: command
INTEGER, INTENT (OUT) ,OPTIONAL :: length,status

Accesses the command line which invoked the program. This is formed by concatenating the command name and the
arguments separated by blanks. This might differ from the command the user actually typed, and should be avoided
(use GET_COMMAND_ARGUMENT instead).

If COMMAND is present, it receives the command (blank-padded or truncated as appropriate). If LENGTH is present, it
receives the length of the command. If STATUS is present, it is set to —1 if COMMAND is too short to hold the whole
command, a positive number if the command cannot be retrieved, and zero otherwise.

SUBROUTINE get_command_argument (number,value,length,status)
INTEGER,INTENT(IN) :: number
CHARACTER (*) , INTENT (OUT) ,0PTIONAL :: value
INTEGER, INTENT (OUT) ,OPTIONAL :: length,status

Accesses command-line argument number NUMBER, where argument zero is the program name. If VALUE is present, it
receives the argument text (blank-padded or truncated as appropriate if the length of the argument differs from that
of VALUE). If LENGTH is present, it receives the length of the argument. If STATUS is present, it is set to zero for success,
—1 if VALUE is too short, and a positive number if an error occurs.

Note that it is an error for NUMBER to be less than zero or greater than the number of arguments (returned by
COMMAND_ARGUMENT _COUNT).

73.15 Access to environment variables [5.1]

The intrinsic procedure GET_ENVIRONMENT_VARIABLE has been added. This duplicates the functionality previously only
available via the procedure GETENV in the FOO_UNIX_ENV module.

SUBROUTINE get_environment_variable(name,value,length,status,trim_name)
CHARACTER (*) ,INTENT(IN) :: name
CHARACTER (%) , INTENT (OUT) ,0PTIONAL :: value
INTEGER, INTENT (OUT) ,0PTIONAL :: length,status
LOGICAL,INTENT(IN),OPTIONAL :: trim_name

END

Page 144

Fortran 2003 Extensions

Accesses the environment variable named by NAME; trailing blanks in NAME are ignored unless TRIM_NAME is present
with the value .FALSE.. If VALUE is present, it receives the text value of the variable (blank-padded or truncated as
appropriate if the length of the value differs from that of VALUE). If LENGTH is present, it receives the length of the
value. If STATUS is present, it is assigned the value 1 if the environment variable does not exist, —1 if VALUE is too
short, and zero for success. Other positive values might be assigned for unusual error conditions.

73.16 Character kind selection [5.1]

The intrinsic function SELECTED_CHAR_KIND has been added. At this time the only character set supported is >ASCII’.

73.17 Argument passing relaxation [5.1]

A CHARACTER scalar actual argument may now be passed to a routine which expects to receive a CHARACTER array,
provided the array is explicit-shape or assumed-size (i.e. not assumed-shape, allocatable, or pointer). This is useful
for C interoperability.

73.18 The MAXLOC and MINLOC intrinsic functions [5.1]

The MAXLOC and MINLOC intrinsic functions now return zeroes for empty set locations, as required by Fortran 2003
(Fortran 95 left this result processor-dependent).

73.19 The VALUE attribute [4.x]

The VALUE attribute specifies that an argument should be passed by value.

73.19.1 Syntax
The VALUE attribute may be specified by the VALUE statement or with the VALUE keyword in a type declaration
statement.

The syntax of the VALUE statement is:
VALUE [:: | name [, name] ...

The VALUE attribute may only be specified for a scalar dummy argument; if the dummy argument is of type CHARACTER,
its character length must be constant and equal to one.

Procedures with a VALUE dummy argument must have an explicit interface.

73.19.2 Semantics

A dummy argument with the VALUE attribute is “passed by value”; this means that a local copy is made of the
argument on entry to the routine and so modifications to the dummy argument do not affect the associated actual
argument and vice versa.

A VALUE dummy argument may be INTENT(IN) but cannot be INTENT (INOUT) or INTENT (OUT).
73.19.3 Example
PROGRAM value_example

INTEGER :: i = 3

CALL s(i)
PRINT *,i ! This will print the value 3

Page 145

Fortran 2003 Extensions

CONTAINS
SUBROUTINE s(j)
INTEGER,VALUE :: j
j =3+ 1 ! This changes the local J without affecting the actual argument
PRINT *,j ! This will print the value 4
END SUBROUTINE
END

This example is not intended to be particularly useful, just to illustrate the functionality.

73.20 The VOLATILE attribute [5.0]

This is a horrible attribute which specifies that a variable can be modified by means outside of Fortran. Its semantics
are basically the same as that of the C ‘volatile’ type qualifier; essentially it disables optimisation for access to that
variable.

73.21 Enhanced complex constants [5.2]

The real or imaginary part may now be a named constant, it is not limited to being a literal constant. For example:

REAL,PARAMETER :: minusone = -1.0
COMPLEX,PARAMETER :: ¢ = (0O,minusone)

This is not particularly useful, since the same effect can be achieved by using the CMPLX intrinsic function.

73.22 The ASSOCIATE construct [5.2]

The ASSOCIATE construct establishes a temporary association between the “associate names” and the specified variables
or values, during execution of a block. Its syntax is

ASSOCIATE (association [, association |...)
block
END ASSOCIATE

where block is a sequence of executable statements and constructs, and association is one of

name => erpression
name => variable
name

The last of those is short for ‘name => name’. The scope of each “associate name” is the block of the ASSOCIATE
construct. An associate name is never allocatable or a pointer, but otherwise has the same attributes as the variable
or expression (and it has the TARGET attribute if the variable or expression is a pointer). If it is being associated with
an expression, the expression is evaluated on execution of the ASSOCIATE statement and its value does not change
during execution of the block — in this case, the associate name is not permitted to appear on the left-hand-side of an
assignment or any other context which might change its value. If it is being associated with a variable, the associate
name can be treated as a variable.

The type of the associate name is that of the expression or variable with which it is associated. For example, in

ASSOCIATE (zoom=>NINT (SQRT(a+b)), alt=>statelmapval(:,i)%altitude)
alt¥%x = altlx*zoom
alt%y = alt)y*zoom

END ASSOCIATE

ALT is associated with a variable and therefore can be modified whereas Z0OOM cannot. The expression for ZOOM is of
type INTEGER and therefore ZOOM is also of type INTEGER.

Page 146

Fortran 2003 Extensions

73.23 Binary, octal and hexadecimal constants [5.2]

In Fortran 95 these were restricted to DATA statements, but in Fortran 2003 these are now allowed to be arguments
of the intrinsic functions CMPLX, DBLE, INT and REAL. The interpretation is processor-dependent, but the intent is
that this specifies the internal representation of the complex or real value. The NAG Fortran compiler requires these
constants to have the correct length for the specified kind of complex or real, viz 32 or 64 bits as appropriate.

For example, on a machine where default REAL is IEEE single precision,
REAL(z"41280000")

has the value 10.5.

73.24 Character sets [5.1; 5.3]

The support for multiple character sets, especially for Unicode (ISO 10646) has been improved.
The default character set is now required to include lowercase letters and all the 7-bit ASCII printable characters.
The ENCODING= specifer for the OPEN and INQUIRE statements is described in the input/output section.

A new intrinsic function SELECTED_CHAR_KIND(NAME) has been added: this returns the character kind for the named
character set, or —1 if there is no kind for that character set. Standard character set names are ’DEFAULT’ for the
default character kind, >ASCII’ for the 7-bit ASCII character set and ’>IS0.10646° for the UCS-4 (32-bit Unicode)
character set. The name is not case-sensitive. Note that although the method of requesting UCS-4 characters is
standardised, the compiler is not required to support them (in which case —1 will be returned); the NAG Fortran
Compiler supports UCS-4 in release 5.3 (as well as UCS-2 and JIS X 0213).

Assignment of a character value of one kind to a character value of a different kind is permitted if each kind is one of
default character, ASCII character, or UCS-4 character. Assignment to and from a UCS-4 character variable preserves
the original value.

Internal file input/output to variables of UCS-4 character kind is allowed (if the kind exists), including numeric
conversions (e.g. the E edit descriptor), and conversions from/to default character and ASCII character. Similarly,
writing default character, ASCII character and UCS-4 character values to a UTF-8 file and reading them back is
permitted and preserves the value.

Finally, the intrinsic function IACHAR (for converting characters to the ASCII character set) accepts characters of any
kind (in Fortran 95 it only accepted default kind).

73.25 Intrinsic function changes for 64-bit machines [5.2]

Especially to support machines with greater than 32-bit address spaces, but with 32-bit default integers, several
intrinsic functions now all have an optional KIND argument at the end of the argument list, to specify the kind of
integer they return. The functions are: COUNT, INDEX, LBOUND, LEN, LEN_TRIM, SCAN, SHAPE, SIZE, UBOUND and VERIFY.

73.26 Miscellaneous intrinsic procedure changes [5.2]
The intrinsic subroutine DATE_AND_TIME no longer requires the three character arguments (DATE, TIME and ZONE) to
have a minimum length: if the actual argument is too small, it merely truncates the value assigned.

The intrinsic functions IACHAR and ICHAR now accept an optional KIND argument to specify the kind of integer to
which to convert the character value. This serves no useful purpose since there are no character sets with characters
bigger than 32 bits.

The intrinsic functions MAX, MAXLOC, MAXVAL, MIN, MINLOC and MINVAL all now accept character values; the comparison
used is the native (.LT.) one, not the ASCII (LLT) one.

The intrinsic subroutine SYSTEM_CLOCK now accepts a COUNT_RATE argument of type real; this is to handle systems
whose clock ticks are not an integral divisor of 1 second.

Page 147

Fortran 2008 Extensions

74 Fortran 2008 Overview

This part of the manual describes those parts of the Fortran 2008 language which are not in Fortran 2003, and which
are currently supported by the NAG Fortran Compiler.

The new features of Fortran 2008 that are supported by the NAG Fortran Compiler can be grouped as follows:

e SPMD programming with coarrays;
e data declaration;

e data usage and computation;

e execution control;

e intrinsic procedures and modules;

e input/output extensions;

e programs and procedures.

75 SPMD programming with coarrays [6.2, 7.0]

75.1 Overview

Fortran 2008 contains an SPMD (Single Program Multiple Data) programming model, where multiple copies of
a program, called “images”, are executed in parallel. Special variables called “coarrays” facilitate communication
between images.

Release 6.2 of the NAG Fortran Compiler limited execution to a single image, with no parallel execution. Release 7.0
of the NAG Fortran Compiler can execute multiple images in parallel on SMP machines, using Co-SMP technology.

75.2 Images

Each image contains its own variables and input/output units. The number of images at execution time is not
determined by the program, but by some compiler-specific method. The number of images is fixed during execution;
images cannot be created or destroyed. The intrinsic function NUM_IMAGES () returns the number of images. Each image
has an “image index”; this is a positive integer from 1 to the number of images. The intrinsic function THIS_IMAGE()
returns the image index of the executing image.

75.3 Coarrays

Coarrays are variables that can be directly accessed by another image; they must have the ALLOCATABLE or SAVE
attribute or be a dummy argument.

A coarray has a “corank”, which is the number of “codimensions” it has. Each codimension has a lower “cobound”
and an upper cobound, determining the “coshape”. The upper cobound of the last codimension is “*”; rather like
an assumed-size array. The “cosubscripts” determine the image index of the reference, in the same way that the
subscripts of an array determine the array element number. Again, like an assumed-size array, the image index must
be less than or equal to the number of images.

A coarray can be a scalar or an array. It cannot have the POINTER attribute, but it can have pointer components.

As well as variables, coarray components are possible. In this case, the component must be an ALLOCATABLE coarray,
and any variable with such a component must be a dummy argument or have the SAVE attribute.

Page 148

Fortran 2008 Extensions

75.4 Declaring coarrays

A coarray has a coarray-spec which is declared with square brackets after the variable name, or with the CODIMENSION
attribute or statement. For example,

REAL a[100,x*]
REAL,CODIMENSION[-10:10,-10:*] :: b
CODIMENSION c[*]

declares the coarray A to have corank 2 with lower “cobounds” both 1 and the first upper cobound 100, the coarray
B to have corank 2 with lower cobounds both —10 and the first upper cobound 10, and the coarray C to have corank
1 and lower cobound 1. Note that for non-allocatable coarrays, the coarray-spec must always declare the last upper
cobound with an asterisk, as this will vary depending on the number of images.

An ALLOCATABLE coarray is declared with a deferred-coshape-spec, for example,
REAL,ALLOCATABLE :: d[:,:,:,:]

declares the coarray D to have corank 4.

75.5 Accessing coarrays on other images

To access another image’s copy of a coarray, cosubscripts are used following the coarray name in square brackets; this
is called “coindexing”, and such an object is a “coindexed object”. For example, given

REAL,SAVE :: e[x*]

the coindexed object e[1] refers to the copy of E on image 1, and e[13] refers to the copy of E on image 13. For a
more complicated example: given

REAL,SAVE :: £[10,21:30,0:%]

the reference £ [3,22,1] refers to the copy of F on image 113. There is no correlation between image numbers and
any topology of the computer, so it is probably best to avoid complicated codimensions, especially if different coarrays
have different coshape.

When a coarray is an array, you cannot put the cosubscripts directly after the array name, but must use array section
notation instead. For example, with

REAL,SAVE :: g(10,10) [*]

the reference glinum] is invalid, to refer to the whole array G on image INUM you need to use g(:,:) [inum] instead.
Similarly, to access a single element of G, the cosubscripts follow the subscripts, e.g. g(i,j) [inum].

Finally, note that when a coarray is accessed, whether by its own image or remotely, the segment ordering rules (see
next section) must be obeyed. This is to avoid nonsense answers from data races.

75.6 Segments and synchronisation

Execution on each image is divided into segments, by “image control statements”. The segments on a single image
are ordered: each segment follows the preceding segment. Segments on different images may be ordered (one following
the other) by synchronisation, otherwise they are unordered.

If a coarray is defined (assigned a value) in a segment on image I, another image J is only allowed to reference or
define it in a segment that follows the segment on I.

The image control statements, and their synchronisation effects, are as follows.

Page 149

Fortran 2008 Extensions

SYNC ALL synchronises with corresponding SYNC ALL statement executions on other images; the segment following
the n'" execution of a SYNC ALL statement on one image follows all the segments that preceded the n!”
execution of a SYNC ALL statement on every other image.

SYNC IMAGES (list)
synchronises with corresponding SYNC IMAGES statement executions on the images in list, which is an integer
expression that may be scalar or a vector. Including the invoking image number in list has no effect. The
segment following the n!” execution of a SYNC IMAGES statement on image I with the image number J in
its list follows the segments on image J before its n!" execution of SYNC IMAGES with I in its list.

SYNC IMAGES (*)
is equivalent to SYNC IMAGES with every image no. in its list, e.g. SYNC IMAGES ([(i,i=1,NUM_IMAGES())1).

SYNC MEMORY
This only acts as a segment divider, without synchronising with any other image. It may be useful for
user-defined orderings when some other mechanism has been used to synchronise.

ALLOCATE or DEALLOCATE
with a coarray object being allocated or deallocated. This synchronises all images, which must execute the
same ALLOCATE or DEALLOCATE statement.

CRITICAL and END CRITICAL
Only one image can execute a CRITICAL construct at a time. The code inside a CRITICAL construct forms
a segment, which follows the previous execution (on whatever image) of the CRITICAL construct.

LOCK and UNLOCK
The segment following a LOCK statements that locks a particular lock variable follows the UNLOCK statement
that previously unlocked the variable.

END statement
An END BLOCK, END FUNCTION, or END SUBROUTINE statement that causes automatic deallocation of a local
ALLOCATABLE coarray, synchronises with all images (which must execute the same END statement).

MOVE_ALLOC intrinsic
Execution of the intrinsic subroutine MOVE_ALLOC with coarray arguments synchronises all images, which
must execute the same CALL statement.

Note that image control statements have side-effects, and therefore are not permitted in pure procedures or within DO
CONCURRENT constructs.

75.7 Allocating and deallocating coarrays

When you allocate an ALLOCATABLE coarray, you must give the desired cobounds in the ALLOCATE statement. For
example,

REAL,ALLOCATABLE :: x(:,:,:)[:,:]

ALLOCATE(x(100,100,3) [1:10,%*])

Note that the last upper cobound must be an asterisk, the same as when declaring an explicit-coshape coarray.

When allocating a coarray there is a synchronisation: all images must execute the same ALLOCATE statement, and all
the bounds, type parameters, and cobounds of the coarray must be the same on all images.

Similarly, there is a synchronisation when a coarray is deallocated, whether by a DEALLOCATE statement or automatic
deallocation by an END statement; every image must execute the same statement.

Note that the usual automatic reallocation of allocatable variables in an intrinsic assignment statement, e.g. when the
expression is an array of a different shape, is not available for coarrays. An allocatable coarray variable being assigned
to must already be allocated and be conformable with the expression; furthermore, if it has deferred type parameters
they must have the same values, and if it is polymorphic it must have the same dynamic type.

Page 150

Fortran 2008 Extensions

75.8 Critical constructs

The CRITICAL construct provides a mechanism for ensuring that only one image at a time executes a code segment.
For example,

CRITICAL
...do something
END CRITICAL

If an image I arrives at the CRITICAL statement while another image J is executing the block of the construct,
it will wait until image J has executed the END CRITICAL statement before continuing. Thus the CRITICAL — END
CRITICAL segment on image I follows the equivalent segment on image J.

As a construct, this may have a name, e.g.

critsec: CRITICAL

END CRITICAL critsec

The name has no effect on the operation of the construct. Each CRITICAL construct is separate from all others, and
has no effect on their execution.

75.9 Lock variables

A “lock variable” is a variable of the type LOCK_TYPE, defined in the intrinsic module ISO_FORTRAN_ENV. A lock variable
must be a coarray, or a component of a coarray. It is initially “unlocked”; it is locked by execution of a LOCK statement,
and unlocked by execution of an UNLOCK statement. Apart from those statements, it cannot appear in any variable
definition context, other than as the actual argument for an INTENT (INOUT) dummy argument.

Execution of the segment after a LOCK statement successfully locks the variable follows execution of the segment before
the UNLOCK statement on the image that unlocked it. For example,

INTEGER FUNCTION get_sequence_number ()
USE iso_fortran_env
INTEGER :: number = O
TYPE(lock_type) lock[*]
LOCK (lock[1])
number = number + 1
get_sequence_number = number
UNLOCK (Llock[1])

END FUNCTION

If the variable lock on image 1 is locked when the LOCK statement is executed, it will wait for it to become unlocked
before continuing. Thus the function get_sequence number () provides an one-sided ordering relation: the segment
following a call that returned the value N will follow every segment that preceded a call that returned a value less
than N.

Conditional locking is provided with the ACQUIRED_LOCK= specifier; if this specifier is present, the executing image
only acquires the lock if it was previously unlocked. For example,

LOGICAL gotit
LOCK(lock[1] ,ACQUIRED_LOCK=gotit)
IF (gotit) THEN
! We have the lock.
ELSE
! We do not have the lock - some other image does.
END IF

Page 151

Fortran 2008 Extensions

It is an error for an image to try to LOCK a variable that is already locked to that image, or to UNLOCK a variable that is
already unlocked, or that is locked to another image. If the STAT= specifier is used, these errors will return the values
STAT _LOCKED, STAT_UNLOCKED, or STAT_LOCKED_OTHER_IMAGE respectively (these named constants are provided by the
intrinsic module ISO_FORTRAN_ENV).

75.10 Atomic coarray accessing

As an exception to the segment ordering rules, a coarray that is an integer of kind ATOMIC_INT_KIND or a logical of kind
ATOMIC_LOGICAL KIND (these named constants are provided by the intrinsic module ISO_FORTRAN_ENV), can be defined
with the intrinsic subroutine ATOMIC_DEFINE, or referenced by the intrinsic subroutine ATOMIC REF. For example,

MODULE stopping
USE iso_fortran_env
LOGICAL(atomic_logical_kind) ,PRIVATE :: stop_flag[*] = .FALSE.
CONTAINS
SUBROUTINE make_it_stop
CALL atomic_define(stop_flag[1],.TRUE._atomic_logical_kind)
END SUBROUTINE
LOGICAL FUNCTION please_stop()
CALL atomic_ref(please_stop,stop_flag[1])
END FUNCTION
END MODULE

In this example, it is perfectly valid for any image to call make_it_stop, and for any other image to invoke the function
please_stop(), without any regard for segments. (On a distributed memory machine it might take some time for
changes to the atomic variable to be visible on other images, but they should eventually get the message.)

Note that ordinary assignment and referencing should not be mixed with calls to the atomic subroutines, as ordinary
assignment and referencing are always subject to the segment ordering rules.

75.11 Normal termination of execution

If an image executes a STOP statement, or the END PROGRAM statement, normal termination is initiated. The other
images continue execution, and all data on the “stopped” image remains; other images can continue to reference and
define coarrays on the stopped image.

When normal termination has been initiated on all images, the program terminates.

75.12 Error termination

If any image terminates due to an error, for example an input/output error in an input/output statement that does
not have any I0STAT= or ERR= specifier, the entire program is error terminated. On a distributed memory machine
it may take some time for the error termination messages to reach every image, so the termination might not be
immediate.

The ERROR STOP statement initiates error termination.

75.13 Fault tolerance

The Fortran 2018 standard adds many features for detecting, simulating, and recovering from image failure. For
example, the FATL IMAGE statement causes the executing image to fail (stop responding to accesses from other images).
These extensions are listed in the detailed syntax below, even though they are not part of the Fortran 2008 standard.

The FAIL IMAGE statement itself is not very useful when the number of images is equal to one, as it inevitably causes
complete program failure.

Page 152

Fortran 2008 Extensions

75.14 Detailed syntax of coarray features
Coindexed object (data object designator):

In a data object designator, a part (component or base object) that is a coarray can include an image
selector: part-name [(section-subscript-list) | [image-selector]

where part-name identifies a coarray, and image-selector is
left-bracket cosubscript-list | , image-selector-spec | right-bracket

The number of cosubscripts must be equal to the corank of part-name. If image-selector appears and part-name is
an array, section-subscript-list must also appear. The optional image-selector-spec is Fortran 2018 (part of the fault
tolerance feature), and is a comma-separated list of one or more of the following specifiers:

STAT = scalar-int-variable
TEAM = team-value
TEAM_NUMBER = scalar-int-expression

A team-value must be a scalar expression of type TEAM_TYPE from the intrinsic module ISO_FORTRAN_ENV. The STAT=
variable is assigned zero if the reference or definition was successful, and the value STAT_FAILED if the image referenced
has failed.

CRITICAL construct:
[construct-name : | CRITICAL | ([sync-stat-list])]
block
END CRITICAL [construct-name]

where the optional sync-stat-list is a STAT= specifier, an ERRMSG= specifier, or both (separated by a comma). Note:
The optional parentheses and sync-stat-list are Fortran 2018.

The block is not permitted to contain:

e a RETURN or STOP statement;
e an image control statement;

e a branch whose target is outside the construct.
FAIL IMAGE statement:
FAIL IMAGE

Note: This statement is Fortran 2018.

LOCK statement:
LOCK (lock-variable | , lock-stat-list |)
where lock-stat-list is a comma-separated list of one or more of the following;:

ACQUIRED_LOCK = scalar-logical-variable
ERRMSG = scalar-default-character-variable
STAT = scalar-int-variable

and lock-variable is a scalar variable of type LOCK_TYPE from the intrinsic module ISO_FORTRAN_ENV.

SYNC ALL statement:

Page 153

Fortran 2008 Extensions

SYNC ALL [([sync-stat-list |) |
SYNC IMAGES statement:
SYNC IMAGES (i¢mage-set [, sync-stat-list])

where image-set is an asterisk, or an integer expression that is scalar or of rank one.

SYNC MEMORY statement:

SYNC MEMORY | ([sync-stat-list |)]
UNLOCK statement:

UNLOCK (lock-variable | , sync-stat-list |)
Note:

e The variables in sync-stat-list or lock-stat-list are not permitted to be coindexed objects, nor may they depend
on anything else in the statement.

75.15 Intrinsic procedures and coarrays

SUBROUTINE ATOMIC_DEFINE(ATOM, VALUE, STAT)

ATOM is INTENT(OUT) scalar INTEGER(ATOMIC_INT_KIND) or LOGICAL(ATOMIC_LOGICAL_KIND), and must be a
coarray or a coindexed object.

VALUE is scalar with the same type as ATOM.

STAT (Optional) is scalar Integer and must have a decimal exponent range of at least four. It must not be

coindexed.

The variable ATOM is atomically assigned the value of VALUE, without regard to the segment rules. If STAT is present,
it is assigned a positive value if an error occurs, and zero otherwise. Note: STAT is part of Fortran 2018.

SUBROUTINE ATOMIC_REF(VALUE, ATOM, STAT)

VALUE is INTENT (QUT) scalar with the same type as ATOM.

ATOM is scalar INTEGER(ATOMIC_INT_KIND) or LOGICAL(ATOMIC_LOGICAL KIND), and must be a coarray or a
coindexed object.

STAT (Optional) is scalar Integer and must have a decimal exponent range of at least four. It must not be
coindexed.

The value of ATOM is atomically read, without regard to the segment rules, and then assigned to the variable VALUE.
If STAT is present, it is assigned a positive value if an error occurs, and zero otherwise. Note: STAT is part of Fortran
2018.

INTEGER FUNCTION IMAGE_INDEX(COARRAY, SUB)

COARRAY a coarray of any type.

SUB an integer vector whose size is equal to the corank of COARRAY.

Page 154

Fortran 2008 Extensions

If the value of SUB is a valid set of cosubscripts for COARRAY, the value of the result is the image index of the image
they will reference, otherwise the result has the value zero. For example, if X is declared with cobounds [11:20,13: %],
the result of IMAGE_INDEX (X, [11,13]) will be equal to one, and the result of IMAGE_INDEX (x, [1,1]) will be equal to
Zero.

FUNCTION LCOBOUND(COARRAY, DIM , KIND)

COARRAY coarray of any type and corank N;

DIM (Optional) scalar Integer in the range 1 to N;

KIND (Optional) scalar Integer constant expression;

Result Integer or Integer(Kind=KIND).

If DIM appears, the result is scalar, being the value of the lower cobound of that codimension of COARRAY. If DIM does

not appear, the result is a vector of length N containing all the lower cobounds of COARRAY. The actual argument for
DIM must not itself be an optional dummy argument.

SUBROUTINE MOVE_ALLOC(FROM, TO, STAT, ERRMSG) ! Revised

FROM an allocatable variable of any type.
TO an allocatable with the same declared type, type parameters, rank and corank, as FROM.
STAT INTENT (OUT) scalar Integer with a decimal exponent range of at least four.

ERRMSG INTENT(INOUT) scalar default character variable.

If FROM and TO are coarrays, the CALL statement is an image control statement that synchronises all images. If STAT is
present, it is assigned a positive value if any error occurs, otherwise it is assigned the value zero. If ERRMSG is present
and an error occurs, it is assigned an explanatory message. Note: The STAT and ERRMSG arguments are Fortran 2018.

INTEGER FUNCTION NUM_IMAGES()

This intrinsic function returns the number of images. In this release of the NAG Fortran Compiler, the value will
always be equal to one.

INTEGER FUNCTION THIS_IMAGE(Q)

Returns the image index of the executing image.

FUNCTION THIS_IMAGE(COARRAY)

Returns an array of type Integer with default kind, with the size equal to the corank of COARRAY, which may be a
coarray of any type. The values returned are the cosubscripts for COARRAY that correspond to the executing image.

INTEGER FUNCTION THIS_IMAGE(COARRAY, DIM)

COARRAY is a coarray of any type.

DIM is scalar Integer.

Returns the cosubscript for the codimension DIM that corresponds to the executing image. Note: In Fortran 2008 DIM
was not permitted to be an optional dummy argument; Fortran 2018 permits that.

Page 155

Fortran 2008 Extensions

FUNCTION UCOBOUND(COARRAY, DIM, KIND)

COARRAY coarray of any type and corank N;
DIM (Optional) scalar Integer in the range 1 to N;
KIND (Optional) scalar Integer constant expression;

Result Integer or Integer(Kind=KIND).

If DIM appears, the result is scalar, being the value of the upper cobound of that codimension of COARRAY. If DIM does
not appear, the result is a vector of length N containing all the upper cobounds of COARRAY. The actual argument for
DIM must not itself be an optional dummy argument.

Note that if COARRAY has corank N>1, and the number of images in the current execution is not an integer multiple of
the coextents up to codimension N—1, the images do not make a full rectangular pattern. In this case, the value of the
last upper cobound is the maximum value that a cosubscript can take for that codimension; e.g. with a coarray-spec
of [1:3,1:%] and four images in the execution, the last upper cobound will be equal to 2 because the cosubscripts
[1,2] are valid even though [2,2] and [2,3] are not.

76 Data declaration [mostly 6.0]

e The maximum rank of an array has been increased from 7 to 15. For example,
REAL array(2,2,2,2,2,2,2,2,2,2,2,2,2,2,2)

declares a 15-dimensional array.

e [3.0] 64-bit integer support is required, that is, the result of SELECTED_INT_KIND(18) is a valid integer kind
number.

e A named constant (PARAMETER) that is an array can assume its shape from its defining expression; this is called
an implied-shape array. The syntax is that the upper bound of every dimension must be an asterisk, for example

REAL,PARAMETER :: idmat3(*,*) = Reshape
REAL,PARAMETER :: yeardata(2000:%) = [

=~
bﬁ
w
» o
N
@ o

declares idmat3 to have the bounds (1:3,1:3), and yeardata to have the bounds (2000:2008).

e The TYPE keyword can be used to declare entities of intrinsic type, simply by putting the intrinsic type-spec
within the parentheses. For example,

TYPE(REAL) x
TYPE (COMPLEX (KIND(0d0))) y
TYPE (CHARACTER (LEN=80)) =z

is completely equivalent, apart from being more confusing, to

REAL x
COMPLEX (KIND(04d0)) y
CHARACTER (LEN=80) z

e As a consequence of the preceding extension, it is no longer permitted to define a derived type that has the name
DOUBLEPRECISION.

e [5.3] A type-bound procedure declaration statement may now declare multiple type-bound procedures. For
example, instead of

PROCEDURE,NOPASS :: a
PROCEDURE,NOPASS :: b=>x
PROCEDURE,NOPASS :: c

Page 156

Fortran 2008 Extensions

the single statement
PROCEDURE,NOPASS :: a, b=>x, c

will suffice.

e [5.3 for C_ASSOCIATED, 7.0 for C_LOC and C_FUNLOC] A specification expression may now use the C_ASSOCIATED,
C_LOC and C_FUNLOC functions from the ISO_C_BINDING module. For example, given a TYPE(C_PTR) variable X
and another interoperable variable Y with the TARGET attribute,

INTEGER workspace (MERGE(10,20,C_ASSOCIATED(X,C_LOC(Y))))

is allowed, and will give workspace a size of 10 elements if the C pointer X is associated with Y, and 20 elements
otherwise.

e [7.0] A specification expression may now use a user-defined operation, provided that operation is provided by
a specification function. (A specification function must be a pure function that is not a statement function or
internal function, and that does not have a dummy procedure argument.) For example, given the interface block

INTERFACE OPERATOR(.user.)
PURE INTEGER FUNCTION userfun(x)
REAL,INTENT(IN) :: x
END FUNCTION
END INTERFACE

the user-defined operator .user. may be used in a specification expression as follows:
LOGICAL mask(.user.(3.145))

Note that this applies to overloaded intrinsic operators as well as user-defined operators.

77 Data usage and computation [mostly 5.3]

e In a structure constructor, the value for an allocatable component may be omitted: this has the same effect as
specifying NULL ().

e [6.0] When allocating an array with the ALLOCATE statement, if SOURCE= or MOLD= is present and its expression
is an array, the array can take its shape directly from the expression. This is a lot more concise than using SIZE
or UBOUND, especially for a multi-dimensional array.

For example,

SUBROUTINE s(x,mask)
REAL x(:,:,:)
LOGICAL mask(:,:,:)
REAL,ALLOCATABLE :: y(:,:,:)
ALLOCATE (y,MOLD=x)
WHERE (mask)

y = 1/x
ELSEWHERE
y = HUGE(x)
END WHERE
]
END SUBROUTINE

e [6.2] An ALLOCATE statement with the SOURCE= clause is permitted to have more than one allocation. The
source-expr is assigned to every variable allocated in the statement. For example,

Page 157

Fortran 2008 Extensions

PROGRAM multi_alloc
INTEGER,ALLOCATABLE :: x(:),y(:,:)
ALLOCATE(x(3),y(2,4) ,SOURCE=42)
PRINT *,x,y

END PROGRAM

will print the value “42” eleven times (the three elements of x and the eight elements of y). If the source-expr is
an array, every allocation needs to have the same shape.

e [6.1] The real and imaginary parts of a COMPLEX object can be accessed using the complex part designators ‘%RE’
and ‘%IM’. For example, given

COMPLEX,PARAMETER :: c = (1,2), ca(2) = [(3,4),(5,6)]

the designators cyre and c%im have the values 1 and 2 respectively, and ca)re and calim are arrays with the
values [3,5] and [4,6] respectively. In the case of variables, for example

COMPLEX :: v, va(10)
the real and imaginary parts can also be assigned to directly; the statement
vajkim = 0

will set the imaginary part of each element of va to zero without affecting the real part.

e In an ALLOCATE statement for one or more variables, the MOLD= clause can be used to give the variable(s) the
dynamic type and type parameters (and optionally shape) of an expression. The expression in MOLD= must be
type-compatible with each allocate-object, and if the expression is a variable (e.g. MOLD=X), the variable need
not be defined. Note that the MOLD= clause may appear even if the type, type parameters and shape of the
variable(s) being allocated are not mutable. For example,

CLASS(*) ,POINTER :: a,b,c
ALLOCATE(a,b,c,MOLD=125)

will allocate the unlimited polymorphic pointers A, B and C to be of type Integer (with default kind); unlike
SOURCE=, the values of A, B and C will be undefined.

e [5.3.1] Assignment to a polymorphic allocatable variable is permitted. If the variable has different dynamic type
or type parameters, or if an array, a different shape, it is first deallocated. If it is unallocated (or is deallocated
by step 1), it is then allocated to have the correct type and shape. It is then assigned the value of the expression.
Note that the operaton of this feature is similar to the way that ALLOCATE (variable ,SOURCE=expr) works. For
example, given

CLASS(*) ,ALLOCATABLE :: x
execution of the assignment statement
x = 43

will result in X having dynamic type Integer (with default kind) and value 43, regardless of whether X was
previously unallocated or allocated with any other type (or kind).

e [6.1] Rank-remapping pointer assignment is now permitted when the target has rank greater than one, provided
it is “simply contiguous” (a term which means that it must be easily seen at compile-time to be contiguous).
For example, the pointer assignment in

REAL,TARGET :: x(100,100)
REAL,POINTER :: x1(:)
x1(1:Size(x)) => x

establishes X1 as a single-dimensional alias for the whole of X.

Page 158

Fortran 2008 Extensions

78 Execution control [mostly 6.0]

e [5.3] The BLOCK construct allows declarations of entities within executable code. For example,

Do i=1,n
Block
Real tmp
tmp = a(i)**3
If (tmp>b(i)) b(i) = tmp
End Block
End Do

Here the variable tmp has its scope limited to the BLOCK construct, so will not affect anything outside it. This
is particularly useful when including code by INCLUDE or by macro preprocessing.

All declarations are allowed within a BLOCK construct except for COMMON, EQUIVALENCE, IMPLICIT, INTENT,
NAMELIST, OPTIONAL and VALUE; also, statement function definitions are not permitted.

BLOCK constructs may be nested; like other constructs, branches into a BLOCK construct from outside are not
permitted. A branch out of a BLOCK construct “completes” execution of the construct.

Entities within a BLOCK construct that do not have the SAVE attribute (including implicitly via initialisation),
will cease to exist when execution of the construct is completed. For example, an allocated ALLOCATABLE variable
will be automatically deallocated, and a variable with a FINAL procedure will be finalised.

e The EXIT statement is no longer restricted to exiting from a DO construct; it can now be used to jump to the end
of a named ASSOCIATE, BLOCK, IF, SELECT CASE or SELECT TYPE construct (i.e. any named construct except
FORALL and WHERE). Note that an EXIT statement with no construct-name still exits from the innermost DO
construct, disregarding any other named constructs it might be within.

e In a STOP statement, the stop-code may be any scalar constant expression of type integer or default character.
(In the NAG Fortran Compiler this also applies to the PAUSE statement, but that statement is no longer standard
Fortran.) Additionally, the STOP statement with an integer stop-code now returns that value as the process exit
status (on most operating systems there are limits on the value that can be returned, so for the NAG Fortran
Compiler this returns only the lower eight bits of the value).

e The ERROR STOP statement has been added. This is similar to the STOP statement, but causes error termination
rather than normal termination. The syntax is identical to that of the STOP statement apart from the extra
keyword ‘ERROR’ at the beginning. Also, the default process exit status is zero for normal termination, and
non-zero for error termination.

For example,
IF (x<=0) ERROR STOP ’x must be positive’

e [6.1] The FORALL construct now has an optional type specifier in the initial statement of the construct, which
can be used to specify the type (which must be INTEGER) and kind of the index variables. When this is specified,
the existence or otherwise of any entity in the outer scope that has the same name as an index variable does not
affect the index variable in any way. For example,

Complex i(100)
Real x(200)

Forall (Integer :: i=1:Size(x)) x(i) = 1

Note that the FORALL construct is still not recommended for high performance, as the semantics imply evaluating
the right-hand sides into array temps the size of the iteration space, and then assigning to the variables; this
usually performs worse than ordinary DO loops.

e [6.1] The DO CONCURRENT construct is a DO loop with restrictions and semantics intended to allow efficient
execution. The iterations of a DO CONCURRENT construct may be executed in any order, and possibly even in
parallel. The loop index variables are local to the construct.

The DO CONCURRENT header has similar syntax to the FORALL header, including the ability to explicitly specify
the type and kind of the loop index variables, and including the scalar mask.

The restrictions on the DO CONCURRENT construct are:

Page 159

Fortran 2008 Extensions

— no branch is allowed from within the construct to outside of it (this includes the RETURN and STOP statements,
but ERROR STOP is allowed);

— the EXIT statement cannot be used to terminate the loop;
— the CYCLE statement cannot refer to an outer loop;

— there must be no dependencies between loop iterations, and if a variable is assigned to by any iteration, it
is not allowed to be referenced by another iteration unless that iteration assigns it a value first;

— all procedures referenced within the construct must be pure;
— no image control statements can appear within the loop;
— no reference to IEEE_GET FLAG or IEEE_SET_HALTING_MODE is allowed.

For example,

Integer vsub(n)

Do Concurrent (i=1:n)
! Safe because vsub has no duplicate values.
x(vsub(i)) = 1

End Do

The full syntax of the DO CONCURRENT statement is:

[do-construct-name : | DO [label | [,] CONCURRENT forall-header
where forall-header is

([integer-type-spec :: | triplet-spec [, triplet-spec |... [, mask-expr])
where mask-expr is a scalar logical expression, and triplet-spec is

name = expr : expr [: expr]

79 Intrinsic procedures and modules

79.1 Additional mathematical intrinsic functions [mostly 5.3.1]

e The elemental intrinsic functions ACOSH, ASINH and ATANH compute the inverse hyperbolic cosine, sine or tangent
respectively. There is a single argument X, which may be of type Real or Complex; the result of the function has
the same type and kind. When the argument is Complex, the imaginary part is expressed in radians and lies in
the range 0<im<m for the ACOSH function, and —7/2<im<s/2 for the ASINH and ATANH functions.

For example, ACOSH(1.543081), ASINH(1.175201) and ATANH(0.7615942) are all approximately equal to 1.0.

e [6.1] The new elemental intrinsic functions BESSEL_JO, BESSEL_Y0, BESSEL_J1 and BESSEL_Y1 compute the Bessel
functions Jg, Yo, J1 and Y respectively. These functions are solutions to Bessel’s differential equation. The J
functions are of the 1°¢ kind and the Y functions are of the 2"¢ kind; the following subscript indicates the order
(0 or 1). There is a single argument X, which must be of type Real; the result of the function has the same type
and kind. For functions of the 2"¢ kind (BESSEL_YO and BESSEL_Y1), the argument X must be positive.

For example, BESSEL_JO(1.5) is approximately 0.5118276, BESSEL_Y0(1.5) is approximately 0.3824489,
BESSEL_J1(1.5) is approximately 0.5579365 and BESSEL_Y1(1.5) is approximately -0.4123086.

e [6.1] The new intrinsic functions BESSEL_JN and BESSEL_YN compute the Bessel functions Jp, and Yy, respectively.
These functions come in two forms: an elemental form and a transformational form.
The elemental form has two arguments: N, the order of the function to compute, and X, the argument of the
Bessel function. BESSEL_JN(0,X) is identical to BESSEL_JO(X), etc..
The transformational form has three scalar arguments: N1, N2 and X. The result is a vector of size MAX(N2-N1+1,0),
containing approximations to the Bessel functions of orders N1 to N2 applied to X.
For example, BESSEL_JN(5,7.5) is approximately 0.283474, BESSEL_YN(5,7.5) is approximately 0.175418,
BESSEL_JN(3,5,7.5) is approximately [-0.258061, 0.023825, 0.283474] and BESSEL_YN(3,5,7.5) is ap-
proximately [0.159708, 0.314180, 0.175418].

Page 160

Fortran 2008 Extensions

e [6.0] The elemental intrinsic functions ERF, ERFC and ERFC_SCALED compute the error function, the complementary
error function and the scaled complementary error function, respectively. The single argument X must be of type
real.

The error function is the integral of —¢? from 0 to X, times 2/SQRT(n); this rapidly converges to 1. The
complementary error function is 1 minus the error function, and fairly quickly converges to zero. The scaled
complementary error function scales the value (of 1 minus the error function) by EXP(X**2); this also converges
to zero but only very slowly.

e [6.0] The elemental intrinsic functions GAMMA and LOG_GAMMA compute the gamma function and the natural
logarithm of the absolute value of the gamma function respectively. The single argument X must be of type real,
and must not be zero or a negative integer.

The gamma function is the extension of factorial from the integers to the reals; for positive integers, GAMMA (X)
is equal to (X—1)!, i.e. factorial of X—1. This grows very rapidly and thus overflows for quite small X; LOG_GAMMA
also diverges but much more slowly.

e The elemental intrinsic function HYPOT computes the “Euclidean distance function” (square root of the sum of
squares) of its arguments X and Y without overflow or underflow for very large or small X or Y (unless the result
itself overflows or underflows). The arguments must be of type Real with the same kind, and the result is of type
Real with that kind. Note that HYPOT (X,Y) is semantically and numerically equal to ABS (CMPLX (X,Y,KIND(X))).

For example, HYPOT (3e30,4e30) is approximately equal to 5e30.

e The array reduction intrinsic function NORM2(X,DIM) reduces Real arrays using the Lo-norm operation. This
operates exactly the same as SUM and PRODUCT, except for the operation involved. The Ly norm of an array is the
square root of the sum of the squares of the elements. Note that unlike most of the other reduction functions,
NORM2 does not have a MASK argument. The DIM argument is optional; an actual argument for DIM is not itself
permitted to be an optional dummy argument.

The calculation of the result value is done in such a way as to avoid intermediate overflow and underflow, except
when the result itself is outside the maximum range. For example, NORM2([X,Y]) is approximately the same as
HYPOT (X,Y).

79.2 Additional intrinsic functions for bit manipulation [mostly 5.3]

e The elemental intrinsic functions BGE, BGT, BLE and BLT perform bitwise (i.e. unsigned) comparisons. They each
have two arguments, I and J, which must be of type Integer but may be of different kind. The result is default
Logical.

For example, BGE(INT (Z’FF’,INT8),128) is true, while INT(Z’FF’ ,INT8)>=128 is false.

e [5.3.1] The elemental intrinsic functions DSHIFTL and DSHIFTR perform double-width shifting. They each have
three arguments, I, J and SHIFT which must be of type Integer, except that one of I or J may be a BOZ literal
constant — it will be converted to the type and kind of the other I or J argument. I and J must have the same
kind if they are both of type Integer. The result is of type Integer, with the same kind as I and J. The I and
J arguments are effectively concatenated to form a single double-width value, which is shifted left or right by
SHIFT positions; for DSHIFTL the result is the top half of the combined shift, and for DSHIFTR the result is the
bottom half of the combined shift.

For example, DSHIFTL(INT(B’11000101’,1),B’11001001°,2) has the value INT(B’00010111’,1) (decimal
value 23), whereas DSHIFTR(INT(B’11000101°,1),B”11001001°,2) has the value INT(B>01110010°,1) (deci-
mal value 114).

e The array reduction intrinsic functions TALL, TANY and IPARITY reduce arrays using bitwise operations. These
are exactly the same as SUM and PRODUCT, except that instead of reducing the array by the + or * operation,
they reduce it by the IAND, I0OR and IEOR intrinsic functions respectively. That it, each element of the result is
the bitwise-and, bitwise-or, or bitwise-exclusive-or of the reduced elements. If the number of reduced elements
is zero, the result is zero for IANY and IPARITY, and NOT (zero) for IALL.

e The elemental intrinsic functions LEADZ and TRAILZ return the number of leading (most significant) and trailing
(least significant) zero bits in the argument I, which must be of type Integer (of any kind). The result is default
Integer.

Page 161

Fortran 2008 Extensions

e The elemental intrinsic functions MASKL and MASKR generate simple left-justified and right-justified bitmasks.
The value of MASKL (I,KIND) is an integer with the specified kind that has its leftmost I bits set to one and the
rest set to zero; I must be non-negative and less than or equal to the bitsize of the result. If KIND is omitted,
the result is default integer. The value of MASKR is similar, but has its rightmost I bits set to one instead.

e [5.3.1] The elemental intrinsic function MERGE_BITS(I,J,MASK) merges the bits from Integer values I and J,
taking the bit from I when the corresponding bit in MASK is 1, and taking the bit from J when it is zero. All
arguments must be BOZ literal constants or of type Integer, and all the Integer arguments must have the same
kind; at least one of I and J must be of type Integer, and the result has the same type and kind.

Note that MERGE_BITS(I,J,MASK) is identical to IOR(IAND(I,MASK) ,IAND(J,NOT(MASK))).

For example, MERGE BITS (INT(B’00110011°,1),B”>11110000°,B°10101010”) is equal to INT(B’01110010°)
(decimal value 114).

e The array reduction intrinsic function PARITY reduces Logical arrays. It is exactly the same as ALL and ANY,
except that instead of reducing the array by the .AND. or .0R. operation, it reduces it by the .NEQV. operation.
That is, each element of the result is . TRUE. if an odd number of reduced elements is . TRUE..

e The elemental intrinsic function POPCNT (I) returns the number of bits in the Integer argument I that are set to
1. The elemental intrinsic function POPPAR(I) returns zero if the number of bits in I that are set to 1 are even,
and one if it is odd. The result is default Integer.

79.3 Other new intrinsic procedures [mostly 5.3.1]

e The intrinsic subroutine EXECUTE_COMMAND_LINE passes a command line to the operating system’s command
processor for execution. It has five arguments, in order these are:
CHARACTER (*) ,INTENT(IN) :: COMMAND — the command to be executed;
LOGICAL,INTENT(IN),OPTIONAL :: WAIT — whether to wait for command completion (default true);
INTEGER, INTENT (INOUT) ,0PTIONAL :: EXITSTAT — the result value of the command;
INTEGER, INTENT (OUT) ,0PTIONAL :: CMDSTAT — see below;
CHARACTER(*) , INTENT (INOUT) ,0PTIONAL :: CMDMSG — the error message if CMDSTAT is non-zero.

CMDSTAT values are zero for success, —1 if command line execution is not supported, —2 if WAIT is present and
false but asynchronous execution is not supported, and a positive value to indicate some other error. If CMDSTAT
is not present but would have been set non-zero, the program will be terminated. Note that Release 5.3.1
supports command line execution on all systems, and does not support asynchronous execution on any system.

For example, CALL. EXECUTE_COMMAND_LINE(’echo Hello’) will probably display ‘Hello’ in the console window.
e The intrinsic function STORAGE_SIZE(A,KIND) returns the size in bits of a scalar object with the same dynamic

type and type parameters as A, when it is stored as an array element (i.e. including any padding). The KIND
argument is optional; the result is type Integer with kind KIND if it is present, and default kind otherwise.

If A is allocatable or a pointer, it does not have to be allocated unless it has a deferred type parameter (e.g.
CHARACTER(:)) or is CLASS(*). If it is a polymorphic pointer, it must not have an undefined status.

For example, STORAGE_SIZE(13_1) is equal to 8 (bits).

e [6.0] The intrinsic inquiry function IS_CONTIGUQUS has a single argument ARRAY, which can be an array of any
type. The function returns true if ARRAY is stored contiguously, and false otherwise. Note that this question has
no meaning for an array with no elements, or for an array expression since that is a value and not a variable.

e [7.0] The intrinsic function FINDLOC is similar to MAXLOC and MINLOC, but instead of finding the location of the

maximum or minimum value of an array, it finds a location that is equal to a specified value; thus it is available
for all intrinsic types including COMPLEX and LOGICAL. It has one of the following two forms:

FINDLOC (ARRAY, VALUE, DIM, MASK, KIND, BACK)
FINDLOC (ARRAY, VALUE, MASK, KIND, BACK)

where

Page 162

Fortran 2008 Extensions

ARRAY is an array of intrinsic type, with rank NV;

VALUE is a scalar of the same type (if LOGICAL) or which may be compared with ARRAY using the intrinsic
operator == (or .EQ.);

DIM is a scalar INTEGER in the range 1 to N;

MASK (optional) is an array of type LOGICAL with the same shape as ARRAY

KIND (optional) is a scalar INTEGER constant expression that is a valid Integer kind number;

BACK (optional) is a scalar LOGICAL value.

The result of the function is type INTEGER, or INTEGER (KIND) if KIND is present.

In the form without DIM, the result is a vector of length N, and is the location of the element of ARRAY that is
equal to VALUE; if MASK is present, only elements for which the corresponding element of MASK are .TRUE. are
considered. As in MAXLOC and MINLOC, the location is reported with 1 for the first element in each dimension;
if no element equal to VALUE is found, the result is zero. If BACK is present with the value .TRUE., the element
found is the last one (in array element order); otherwise, it is the first one.

In the form with DIM, the result has rank N—1 (thus scalar if ARRAY is a vector), the shape being that of ARRAY
with dimension DIM removed, and each element of the result is the location of the (masked) element in the
dimension DIM vector that is equal to VALUE.

For example, if ARRAY is an Integer vector with value [10,20,30,40,50], FINDLOC(ARRAY,30) will return the
vector [3] and FINDLOC(ARRAY,7) will return the vector [0 1J.

79.4 Changes to existing intrinsic procedures [mostly 5.3.1]

e The intrinsic functions ACOS, ASIN, ATAN, COSH, SINH, TAN and TANH now accept arguments of type Complex.
Note that the hyperbolic and non-hyperbolic versions of these functions and the new ACOSH, ASINH and ATANH
functions are all related by simple algebraic identities, for example the new COSH(X) is identical to the old
C0S((0,1)*X) and the new SINH(X) is identical to the old (0,-1)*SIN((0,1)*X).

e The intrinsic function ATAN now has an extra form ATAN(Y,X), with exactly the same semantics as ATAN2(Y,X).

e [6.2] The intrinsic functions MAXLOC and MINLOC now have an additional optional argument BACK following the
KIND argument. It is scalar and of type Logical; if present with the value .True., if there is more than one
element that has the maximum value (for MAXLOC) or minimum value (for MINLOC), the array element index
returned is for the last element with that value rather than the first.

For example, the value of
MAXLOC([5,1,5], BACK=.TRUE.)

is the array [3], rather than [1].

e The intrinsic function SELECTED_REAL_KIND now has a third argument RADIX; this specifies the desired radix of the
Real kind requested. Note that the function IEEE_SELECTED_REAL_KIND in the intrinsic module IEEE_ARITHMETIC
also has this new third argument, and will allow requesting IEEE decimal floating-point kinds if they become
available in the future.

79.5 ISO_C_BINDING additions [6.2]

The standard intrinsic module ISO_C_BINDING contains an additional procedure as follows.

INTERFACE c_sizeof
PURE INTEGER(c_size_t) FUNCTION c_sizeof...(x) ! Specific name not visible
TYPE(*) :: x(..)
END FUNCTION
END INTERFACE

The actual argument x must be interoperable. The result is the same as the C sizeof operator applied to the
conceptually corresponding C entity; that is, the size of x in bytes. If x is an array, it is the size of the whole array,
not just one element. Note that x cannot be an assumed-size array.

Page 163

Fortran 2008 Extensions

79.6 ISO_FORTRAN_ENV additions

[5.3] The standard intrinsic module ISO_FORTRAN_ENV contains additional named constants as follows.

e The additional scalar integer constants INT8, INT16, INT32, INT64, REAL32, REAL64 and REAL128 supply the
kind type parameter values for integer and real kinds with the indicated bit sizes.

e The additional named array constants CHARACTER_KINDS, INTEGER_KINDS, LOGICAL KINDS and REAL_KINDS list
the available kind type parameter values for each type (in no particular order).

[6.1] The standard intrinsic module ISO_FORTRAN_ENV contains two new functions as follows.

e COMPILER_VERSION. This function is pure, has no arguments, and returns a scalar default character string that
identifies the version of the compiler that was used to compile the source file. This function may be used in a
constant expression, e.g. to initialise a variable or named constant with this information. For example,

Module version_info
Use Iso_Fortran_Env
Character(Len(Compiler_Version())) :: compiler = Compiler_Version()
End Module
Program show_version_info
Use version_info
Print *,compiler
End Program

With release 6.1 of the NAG Fortran Compiler, this program will print something like
NAG Fortran Compiler Release 6.1(Tozai) Build 6105

e COMPILER_OPTIONS. This function is pure, has no arguments, and returns a scalar default character string that
identifies the options supplied to the compiler when the source file was compiled. This function may be used in
a constant expression, e.g. to initialise a variable or named constant with this information. For example,

Module options_info
Use Iso_Fortran_Env
Character(Len(Compiler_Options())) :: compiler = Compiler_Options()
End Module
Program show_options_info
Use options_info
Print *,compiler
End Program

If compiled with the options —C'=array —C=pointer —O, this program will print something like

-C=array -C=pointer -0

80 Input/output extensions [mostly 5.3]

e The NEWUNIT= specifier has been added to the OPEN statement; this allocates a new unit number that cannot
clash with any other logical unit (the unit number will be a special negative value). For example,

INTEGER unit
OPEN(FILE=’output.log’ ,FORM="FORMATTED’ ,NEWUNIT=unit)
WRITE(unit,*) ’Logfile opened.’

The NEWUNIT= specifier can only be used if either the FILE= specifier is also used, or if the STATUS= specifier is
used with the value *SCRATCH’.

Page 164

Fortran 2008 Extensions

e Recursive input/output is allowed on separate units. For example, in

81

Write (*,Output_Unit) £(100)

the function f is permitted to perform i/o on any unit except Output_Unit; for example, if the value 100 is out
of range, it would be allowed to produce an error message with

Write (*,Error_Unit) ’Error in F:’,n,’is out of range’

[6.0] A sub-format can be repeated an indefinite number of times by using an asterisk (*) as its repeat count.
For example,

SUBROUTINE s (x)
LOGICAL x(:)
PRINT 1,x
1 FORMAT(’x =’,%(:,’ ’,L1))
END SUBROUTINE

will display the entire array x on a single line, no matter how many elements x has. An indefinite repeat count
is only allowed at the top level of the format specification, and must be the last format item.

[6.0] The GO and GO.d edit descriptors perform generalised editing with all leading and trailing blanks (except
those within a character value itself) omitted. For example,

PRINT 1,1.25,.True.,"Hi !",123456789
1 FORMAT(*(GO,’,’))

produces the output

1.250000,T,Hi !,123456789,

Programs and procedures [mostly 5.3]

An empty internal subprogram part, module subprogram part or type-bound procedure part is now permitted
following a CONTAINS statement. In the case of the type-bound procedure part, an ineffectual PRIVATE statement
may appear following the unnecessary CONTAINS statement.

[6.0] An internal procedure can be passed as an actual argument or assigned to a procedure pointer. When the
internal procedure is invoked via the dummy argument or procedure pointer, it can access the local variables of
its host procedure. In the case of procedure pointer assignment, the pointer is only valid until the host procedure
returns (since the local variables cease to exist at that point).

For example,

SUBROUTINE mysub(coeffs)
REAL,INTENT(IN) :: coeffs(0:) ! Coefficients of polynomial.
REAL integral
integral = integrate(myfunc,0.0,1.0) ! Integrate from 0.0 to 1.0.
PRINT *,’Integral =’,integral
CONTAINS
REAL FUNCTION myfunc(x) RESULT(y)
REAL, INTENT(IN) :: x
INTEGER i
y = coeffs(UBOUND(coeffs,1))
DO i=UBOUND(coeffs,1)-1,0,-1
y = y*x + coeffs(i)
END DO
END FUNCTION
END SUBROUTINE

Page 165

Fortran 2008 Extensions

e The rules used for generic resolution and for checking that procedures in a generic are unambiguous have been
extended. The extra rules are that

— a dummy procedure is distinguishable from a dummy variable;

— an ALLOCATABLE dummy variable is distinguishable from a POINTER dummy variable that does not have
INTENT (IN).

e [6.0] A disassociated pointer, or an unallocated allocatable variable, may be passed as an actual argument to
an optional nonallocatable nonpointer dummy argument. This is treated as if the actual argument were not
present.

e [5.3.1] Impure elemental procedures can be defined using the IMPURE keyword. An impure elemental procedure
has the restrictions that apply to elementality (e.g. all arguments must be scalar) but does not have any of
the “pure” restrictions. This means that an impure elemental procedure may have side effects and can contain
input/output and STOP statements. For example,

Impure Elemental Integer Function checked_addition(a,b) Result(c)
Integer,Intent(In) :: a,b
If (a>0 .And. b>0) Then
If (b>Huge(c)-a) Stop ’Positive Integer Overflow’
Else If (a<0 .And. b<0) Then
If ((atHuge(c))+b<0) Stop ’Negative Integer Overflow’
End If
c=a+b
End Function

When an argument is an array, an impure elemental procedure is applied to each element in array element order
(unlike a pure elemental procedure, which has no specified order). An impure elemental procedure cannot be
referenced in a context that requires a procedure to be pure, e.g. within a FORALL construct.

Impure elemental procedures are probably most useful for debugging (because i/o is allowed) and as final pro-
cedures.

e [6.0] If an argument of a pure procedure has the VALUE attribute it does not need any INTENT attribute. For
example,

PURE SUBROUTINE s(a,b)
REAL, INTENT(OUT) :: a
REAL,VALUE :: b
a=>

END SUBROUTINE

Note however that the second argument of a defined assignment subroutine, and all arguments of a defined
operator function, are still required to have the INTENT (IN) attribute even if they have the VALUE attribute.

e [5.3.1] The FUNCTION or SUBROUTINE keyword on the END statement for an internal or module subprogram is
now optional (when the subprogram name does not appear). Previously these keywords were only optional for
external subprograms.

e ENTRY statements are regarded as obsolescent.
e [1.0] A line in the program is no longer prohibited from beginning with a semi-colon.

e [6.2] The name of an external procedure with a binding label is now considered to be a local identifier only, and
not a global identifier. That means that code like the following is now standard-conforming;:

SUBROUTINE sub() BIND(C,NAME=’one’)
PRINT *,’one’

END SUBROUTINE

SUBROUTINE sub() BIND(C,NAME=’two’)
PRINT *,’two’

END SUBROUTINE

PROGRAM test

Page 166

Fortran 2008 Extensions

INTERFACE
SUBROUTINE one() BIND(C)
END SUBROUTINE
SUBROUTINE two() BIND(C)
END SUBROUTINE
END INTERFACE
CALL one
CALL two
END PROGRAM

e [6.2] An internal procedure is permitted to have the BIND(C) attribute, as long as it does not have a NAME=
specifier. Such a procedure is interoperable with C, but does not have a binding label (as if it were specified
with NAME=>").

e [6.2] A dummy argument with the VALUE attribute is permitted to be an array, and is permitted to be of type
CHARACTER with length non-constant and/or not equal to one. (It is still not permitted to have the ALLOCATABLE
or POINTER attributes, and is not permitted to be a coarray.)

The effect is that a copy is made of the actual argument, and the dummy argument is associated with the copy;
any changes to the dummy argument do not affect the actual argument. For example,

PROGRAM value_example_2008
INTEGER :: a(3) = [1,2,3]
CALL s(’Hello?’,a)

PRINT °’(7X,3I6)’,a

CONTAINS

SUBROUTINE s(string,j)
CHARACTER (%) ,VALUE :: string
INTEGER,VALUE :: j(:)
string(LEN(string):) = !’
j=3j+1
PRINT ’(7X,A,3I6)’,string,j

END SUBROUTINE

END PROGRAM

will produce the output

Hello! 2 3 4
1 2 3

e [7.0] Submodules, together with separate module procedures, provide an additional method of structuring a
Fortran program.

A “separate module procedure” is a procedure whose interface is declared in the module specification part, but
whose definition may provided either in the module itself, or in a submodule of that module. The interface of
a separate module procedure is declared by using the MODULE keyword in the prefix of the interface body. For
example,

INTERFACE
MODULE RECURSIVE SUBROUTINE sub(x,y)
REAL, INTENT(INOUT) :: x,y
END SUBROUTINE
END INTERFACE

An important aspect of the interface for a separate module procedure is that, unlike any other interface body,
it accesses the module by host association without the need for an IMPORT statement. For example,

INTEGER,PARAMETER :: wp = SELECTED_REAL_KIND(15)
INTERFACE
MODULE REAL(wp) FUNCTION f(a,b)
REAL(wp) a,b
END FUNCTION
END INTERFACE

Page 167

Fortran 2008 Extensions

The eventual definition of the separate module procedure, whether in the module itself or in a submodule, must
have exactly the same characteristics, the same names for the dummy arguments, the same name for the result
variable (if a function), the same binding-name (if it uses BIND(C)), and be RECURSIVE if and only if the interface
is declared so. There are two ways to achieve this:

1. Define the procedure in the normal way, and get all the characteristics right; the compiler will check that
you have done so. Note that the definition must also include the MODULE keyword in the prefix, just like
the definition. For example,

CONTAINS
MODULE REAL (wp) FUNCTION f(a,b)
REAL(wp)a,b
f = ax*2 - b*x*x3
END FUNCTION

2. Alternatively, the entire interface may be accessed in the definition without redeclaring everything by using
the MODULE PROCEDURE statement in this context. For example,

CONTAINS
MODULE PROCEDURE sub
! Arguments A and B, their characteristics, and that this is a recursive subroutine,
! are all taken from the interface declaration.
IF (a>b) THEN
CALL sub(b,-ABS(a))
ELSE
a = b*x2 - a
END IF
END PROCEDURE

A submodule has the form (italic square brackets indicate optionality):

submodule-stmt
declaration-part
[CONTAINS
module-subprogram-part]
END [SUBMODULE [submodule-name]]

The initial submodule-stmt has the form
SUBMODULE (module-name [: parent-submodule-name]) submodule-name

where module-name is the name of a module with one or more separate module procedures, parent-submodule-
name (if present) is the name of another submodule of that module, and submodule-name is the name of the
submodule being defined. The submodules of a module thus form a tree structure, with successive submodules
being able to extend others; however, the name of a submodule is unique within that module. This structure is
to facilitate creation of internal infrastructure (types, constants, and procedures) that can be used by multiple
submodules, without having to put all the infrastructure inside the module itself.

The submodule being defined accesses its parent module or submodule by host association; for entities from the
module, this includes access to PRIVATE entities. Any local entity it declares in the declaration-part will therefore
block access to an entity in the host that has the same name.

The entities (variables, types, procedures) declared by the submodule are local to that submodule, with the sole
exception of separate module procedures that are declared in the ancestor module and defined in the submodule.
No procedure is allowed to have a binding name, again, except in the case of a separate module procedure, where
the binding name must be the same as in the interface.

For example,
MODULE mymod

INTERFACE
MODULE INTEGER FUNCTION next_number() RESULT(r)

Page 168

Fortran 2008 Extensions

END FUNCTION
MODULE SUBROUTINE reset()
END SUBROUTINE
END INTERFACE
END MODULE
SUBMODULE (mymod) variables
INTEGER :: next =1
END SUBMODULE
SUBMODULE (mymod:variables) functions
CONTAINS
MODULE PROCEDURE next_number
r = next
next = next + 1
END PROCEDURE
END SUBMODULE
SUBMODULE (mymod:variables) subroutines
CONTAINS
MODULE SUBROUTINE reset()
PRINT *,’Resetting’
next = 1
END SUBROUTINE
END SUBMODULE
PROGRAM demo
USE mymod
PRINT *,’Hello’,next_number()
PRINT *,’Hello again’,next_number ()
CALL reset
PRINT *,’Hello last’,next_number()
END PROGRAM

Submodule information for use by other submodules is stored by the NAG Fortran Compiler in files named
module . submodule . sub, in a format similar to that of .mod files. The —nomod option, which suppresses creation

of .mod files, also suppresses creation of .sub files.

Page 169

Appendices

82 Mixing Fortran and C

When mixing Fortran source code with C source code, without using the C interoperability features of Fortran 2003,
the following points should be noted.

82.1 Naming Conventions
External procedure names and common block names are in lower case with an underscore appended (this is the same
as the standard UNIX {77). The main program-unit is called ‘main’.

Module variables and module procedure names are formed by taking the module name (in lower case), appending
‘MP_’ and then appending the entity’s name (in lower case).

These conventions differ when the —compatible option is used. On Windows this causes external procedures and
common blocks to be in upper case with no trailing underscore, while module entities have the module name in upper
case instead of lower case (64-bit Windows is always —compatible). On most other platforms this option adds an extra
underscore (after the one that is always added) for names that already had an underscore.

82.2 Initialisation and Termination

If the main program is not written in Fortran then either the initialisation routine
__NAGf90_rts_init(int argc,char*argv[])

or the i/o initialisation routine
__NAGf90_io_init(void)

should be called from C. The __NAGf90_rts_init routine initialises the Fortran floating-point environment as well as
allowing command-line arguments to be accessed via the Fortran 2003 intrinsic functions and also via the FO0_UNIX
module.

Additionally, the program should be terminated with __NAGf90_finish(int status), or alternatively
__NAGf90_io_finish(void) may be called before the usual C termination routine to close all Fortran files and flush
the Fortran i/o buffers (failing to do this might corrupt an output file that is still open).

82.3 Calling Conventions

The following sections describe in detail the calling conventions used by Fortran programs compiled with the NAG
Fortran Compiler in C terms. This information is thus mostly useful to those wishing to mix Fortran and C code.

The conventions used for the Fortran 77 subset of Modern Fortran are compatible with the de facto UNIX 77
conventions (except for COMPLEX functions compiled without the —compatible option).

82.4 Data Types

Definitions of data types useful in communicating from C to Fortran are in the files dope.h and nagfortran.h, which
are located in the compiler library directory (usually /usr/local/1ib/NAG Fortran on UNIX-like systems).

Page 170

Appendices

Fortran Data Type | Fortran Precision | C typedef name
INTEGER 8 bits Integerl
16 bits Integer2
32 bits Integer or Integer3
64 bits Integerd
LOGICAL 8 bits Logicall
16 bits Logical2
32 bits Logical
64 bits Logical4
REAL half _-NAGf90_HReal
single Real
double Double
double-double DDReal
quadruple QReal
COMPLEX half __NAGf90_HComplex
single Complex
double DComplex
double-double DDComplex
quadruple QComplex

Note that DDReal and QReal are the same on most systems; on Sun Solaris these are different (the latter being an
IEEE-conformant 128-bit floating-point type).

82.4.1 Pointers

Scalar non-polymorphic non-CHARACTER POINTER types are simply C pointers to the object.

An array POINTER is a dope vector describing the array pointed to. Unlike a simple address, these dope vectors are
capable of directly describing non-contiguous array sections of contiguous arrays. See below (DopeN and ChDopelN)
for further details. Polymorphic dope vectors are NPDope N except for CLASS (*) pointers which are CSDopeN.

82.4.2 Derived types

Fortran derived types are translated into C structs. If BIND(C) or SEQUENCE is used, the order of the items within
the struct is the same as the order within the derived type definition. Otherwise, the order of items is permuted to
put larger types at the front of the struct so as to improve alignment and reduce storage; the C output code can be
inspected to determine the ordering used.

82.4.3 Supporting types

Char unsigned char
Data type for default (single-byte) character storage.

Char2 unsigned short
Data type for 16-bit (JIS and UCS-2) character storage.

Char4 unsigned int
Data type for 32-bit (UCS-4) character storage.

Substring
struct { Char *addr; Chrlen len;}
Describes a single-byte (default) CHARACTER string; used for deferred-length default CHARACTER variables
and as the return type of variable-length scalar non-POINTER default CHARACTER functions and all POINTER
default CHARACTER functions.

Page 171

Appendices

Substring?2
struct { Char2 #*addr; Chrlen len;}
Describes a 16-bit (JIS or UCS-2) CHARACTER string; used for deferred-length 16-bit CHARACTER variables
and as the return type of variable-length scalar non-POINTER 16-bit CHARACTER functions and all POINTER
16-bit CHARACTER functions.

Substringd4
struct { Char4 *addr; Chrlen len;}
Describes a 32-bit ISO_10646 (UCS-4) CHARACTER string; used for deferred-length 32-bit CHARACTER variables
and as the return type of variable-length scalar non-POINTER UCS-4 CHARACTER functions and all POINTER
UCS-4 CHARACTER functions.

Offset int, long or long long
An integer type for addressing and subscript calculations; this is int (32-bit) on 32-bit systems and small
model 64-bit systems, and a 64-bit integer type on large model 64-bit systems.

Chrlen usually int, or long long on 64-bit Windows.
An integer type for representing character length.

Pointer wusually char *.
A byte pointer used to refer to any type and for pointer arithmetic.

Triplet struct { Offset extent,mult,lower;}
Contains the parameters of an array dimension. extent is the size of that dimension, mult is the stride
(i.e., the distance between successive elements in bytes) and lower is the lower bound. It is a component
of the Dope N and ChDopeN structs.

DopeN struct { Pointer addr; Offset offset; Triplet dim[N];}
Dope vectors for all non-polymorphic non-CHARACTER arrays (including arrays of derived type). N is the
rank and is from 1 to 7. addr is the address of the first element, dim describes each dimension and offset
is the offset to add to the subscript calculation, i.e., SUM(mult*lower). This is used as the return type
for POINTER array functions; a pointer to it is used as the argument type for assumed-shape and POINTER
array arguments.

An array pointer which has been nullified has an addr field which is a null pointer; note that zero-sized
arrays have an addr field which is not a null pointer.

ChDopeN struct { Pointer addr; Chrlen len; Offset offset; Triplet dim[N];}
These are exactly the same as the DopeN structs with the addition of the len component which specifies
the CHARACTER length.

ArrayTemp_type
struct { type *addr; Offset extent[7];}
Describes a contiguous array of type, which is one of: Integerl, Integer2, Integer, Integer4, Logicall,
Logical2, Logical, Logical4, Real, Double, QReal, Complex, DComplex or QComplex. It is used as the
return type for non-POINTER array functions. Note that extent values after the rank of the array being
described are undefined.

ArrayTemp_Character
struct { Char *addr; Chrlen len; Offset extent[7];}
Describes a contiguous CHARACTER array; it is the same as the other array types with the addition of the
len component for the CHARACTER length.

ArrayTemp_Derived
synonym for ArrayTemp_Character.
Describes a contiguous array of any derived type. The len field in this case is the size of the derived type
array element.

82.5 SUBROUTINE return types
82.5.1 SUBROUTINEs with label arguments

The return type is int; its value is the index of the label to which control is to be transferred (1 for the first label,
etc.). Zero or an out-of-range value indicates no control transfer is to take place.

Page 172

Appendices

82.5.2 SUBROUTINEs with no label arguments

Return type is void.

82.6 FUNCTION return types

82.6.1 Scalar

. INTEGER, LOGICAL and REAL.

The intrinsic type as listed above.

. COMPLEX, —compatible option not used, and not Windows 64-bit mode.

Complex or DComplex according to the precision.

. COMPLEX, -compatible option used, or Windows 64-bit mode.

Return type is void. The address of a temporary of type Complex or DComplex is passed as the initial argument
of the function (the result is written to this location).

. CHARACTER with fixed or assumed length.

Return type is void. Two additional initial arguments are passed to the function, the first (Char*, Char2# or
Char4x*) being the address to which the result is to be written and the second (Chrlen) being the length of the
result (in case the called function is of assumed length).

. CHARACTER with variable length.

Return type is Substring, Substring2 or Substring4 (described above). The called function allocates the
storage for the string being returned; it is the caller’s responsibility to deallocate it when it is no longer required.

. Derived type.

The derived-type struct.

82.6.2 Scalar POINTER functions

Note that with all POINTER-valued functions the storage to which the result points may have been allocated within
the called function or the result may point to pre-existing storage.

. INTEGER, LOGICAL, REAL and COMPLEX.

A pointer to the appropriate intrinsic type (e.g., Complexx).

CHARACTER
Return type is Substring, Substring2 or Substring4.

. Derived type.

A pointer to the derived-type struct.

82.6.3 Array non-POINTER functions

1.

Intrinsic types.
The appropriate ArrayTemp_ struct for the intrinsic type, as described above.

. Derived types.

ArrayTemp Derived is returned with the len component set to the size of the derived-type struct.

82.6.4 Array POINTER functions

1.

CLASS (%)
CSDopel, CSDope2, ... or CSDope7, depending on the rank of the array.

. CLASS (derived-type-name) NPDopel, NPDope2, ... or NPDope7, depending on the rank of the array.

Page 173

Appendices

3. Non-polymorphic non-CHARACTER type.
Dopel, Dope2, ... or Dope7, depending on the rank of the array.

4. CHARACTER.
ChDopel, ChDope2, ... or ChDope7, depending on the rank of the array.

Note that non-polymorphic derived-type arrays are returned as DopeN structs.

82.7 Argument types
82.7.1 CHARACTER type

All normal arguments of CHARACTER type, whether default CHARACTER or multi-byte CHARACTER, have an additional
Chrlen argument being the length of the CHARACTER entity; this additional argument is passed at the end of the
argument list after all the normal arguments. When there are several CHARACTER arguments their lengths are passed
in order from left to right.

This is except on 32-bit Windows when the —compatible option is specified, the additional argument immediately
follows the CHARACTER argument.

The other exception to this rule is for assumed-shape CHARACTER arrays; in this case the length of the dummy argument
is taken directly from the field in the dope vector and is not passed separately.

82.7.2 non-POINTER non-ALLOCATABLE Scalar
1. non-CHARACTER type.
The address of the argument is passed (e.g., Integer* for an INTEGER argument).

2. CHARACTER.
The address of the argument is passed, and additionally the length of the argument is passed as a separate
Chrlen argument at the end of the argument list.

82.7.3 POINTER and ALLOCATABLE Scalar

These are passed exactly the same as the normal case except that the address of the pointer (or allocatable descriptor)
is passed (e.g., Integer** for an INTEGER POINTER).

82.7.4 non-POINTER Array

1. Assumed shape.
The address of an appropriate dope vector describing the array is passed (i.e., a CSDope N *, NPDope N *, Dope N *
or a ChDopeN *, depending on the polymorphism and type of the dummy argument). There is no need for the
array to be contiguous as long as it can be described by an array section.

2. Other.
The address of the first element of the array is passed. For CHARACTER arrays the length of each array element
is passed as an Chrlen at the end of the argument list, the same as for scalars. The array must be contiguous.

82.7.5 POINTER Array

The address of an appropriate dope vector is passed, the same as for assumed-shape arrays. For CHARACTER arrays
the length is passed at the end as a separate argument.

82.7.6 Procedures

The address of the procedure is passed. CHARACTER functions have the length passed as a separate argument at the
end of the list; if the function is of variable length this length will be negative.

Page 174

Appendices

82.7.7 OPTIONAL arguments

If an OPTIONAL argument is .NOT.PRESENT() a null pointer of the appropriate type is passed (e.g., for an INTEGER
scalar, an (Integer*)O0 is passed).

Page 175

Appendices

83

83.1 Printing Characters

Decimal value and character. The value 32 is a space.

ASCII Collating Sequence

30 40 50 60 70 8 90 100 110 120
0 (2 < F P Z d n X
1) 3 = G Q [e o y
2 *x 4 > H R \ f P z
3| + 5 7 1 8§ 1] g q {
4| " s 6 ¢] J T - h r |
5/# - 7 A K U _ i s }
6/¢ . 8 B L V ¢ j t -
7% / 9 C M W a k u
8| & 0 : D N X b 1 v
9| 1 ; E 0 Y c m W

Octal value and character. The value 40 is a space.

40 50 60 70 100 110 120 130 140 150 160 170
0 (0 8 Q H P X ’ h P X
1 !) 1 9 A I Q Y a i q y
2 " * 2 : B J R Z b J r Z
3| # + 3 ; C K S [c k s {
41¢ , 4 < D L T \ 4 1 ot |
51/% - 5 = E M U] e m u }
6| & . 6 > F N v - f n v -
T /7T 7 G 0 W - g o W

Page 176

Appendices

83.2 Non-printing Characters

Decimal Octal Mnemonic Control Description
0 000 NUL ctrl/@ Null character
1 001 SOH ctrl/A Start of heading
2 002 STX ctrl/B Start of text
3 003 ETX ctrl/C End of text
4 004 EOT ctrl/D End of transmission
5 005 ENQ ctrl/E Enquire
6 006 ACK ctrl/F Acknowledge
7 007 BEL ctrl/G Bell
8 010 BS ctrl/H Backspace
9 011 HT ctrl/T Horizontal tab
10 012 LF ctrl/J Line feed
11 013 vT ctrl/K Vertical tab
12 014 FF ctrl/L Form feed
13 015 CR ctrl/M Carriage return
14 016 SO ctrl/N Shift out
15 017 ST ctrl/O Shift in
16 020 DLE ctrl/P Data link escape
17 021 DC1 ctrl/Q Device control 1 (XON)
18 022 DC2 ctrl/R Device control 2
19 023 DC3 ctrl/S Device control 3 (XOFF)
20 024 DC4 ctrl/T Device control 4
21 025 NAK ctrl/U Negative acknowledge
22 026 SYN ctrl/V Synchronise
23 027 ETB ctrl/W End transmission of block
24 030 CAN ctrl/X Cancel
25 031 EM ctrl/Y End of medium
26 032 EOF ctrl/Z End-of-file
27 033 ESC ctrl/[Escape
28 034 FS ctrl/\ File separator
29 035 GS ctrl/] Group separator
30 036 RS ctrl/” Record separator
31 037 Us ctrl/_ Unit separator
127 177 DEL Delete

Page 177

Contents

1 Introduction to the Compiler

1.1 Other Fortran-related Activities at NAG
1.2 This Manual e

2 Usage

3 Description

4 File Types

5 Compiler Options

6 Files

7 Compilation Messages

8 Compiler Limits

9 Input/Output Information

10 OpenMP Support

11 Automatic File Preconnection
12 IEEE 754 Arithmetic Support
13 Half precision floating-point
14 Random Number Algorithm
15 Automatic Garbage Collection
16 Memory Tracing

17 Undefined Variable Detection
18 Data Types

19 Modules

20 Runtime Environment Variables
21 Debugging

Page 178

Detailed Contents

13

13

14

14

15

15

15

16

16

16

17

17

18

19

19

20

Detailed Contents

22 Producing a Call Graph 20
23 Dependency Analysis 21
24 Generating Interfaces 22
25 Source File Polishing 22
26 Enhanced Source File Polishing 26
27 Unifying Precision 27
28 dbx90 command line 30
29 Description of dbx90 30
30 dbx90 options 30
31 dbx90 Commands 30
32 dbx90 Expressions 32

32.1 Scalar expressions e e e e 32

32.2 Array sections L e 32

32.3 Derived type component specification oL 32
33 dbx90 Command aliases 33
34 dbx90 limitations 33
35 Example of dbx90 33
36 Troubleshooting dbx90 35
37 Overview of fpp 36
38 fpp command line 36
39 Description of fpp 36
40 fpp options 36
41 Using fpp 37

41.1 Source files e 37

41.2 Output . . . oL e e 37

41.3 Directives L e e e 38

41.4 Macro definition L. 38

Detailed Contents

41.5 Including external files oL
41.6 Line number control L L e e e e e

41.7 Conditional selection of source text e e e

42 Preprocessing details
42.1 Scope of macro or variable definitions oL Lo
42.2 End of macro definition L L
42.3 Function-like macro definition Lo o
42.4 Cancelling macro definitions L
42.5 Conditional source code selection L. L L
42.6 Including external files oL
42,7 Commentso e e e e e e e
42.8 Macro functions L

42.9 Macro exXpression oo Lo e e e e e e e e e e

43 fpp diagnostics

44 Non-standard Extensions
44.1 BOZ literal constants outside DATA statements
44.2 Longer Names oL
44.3 Dollar Sign in Names 0 oL e e e
44.4 Input/output endian/format conversion Lo o
44.5 Elemental BIND(C) procedures o o v v v ittt e

44.6 Maximum array rank is 31 oL L oL

45 Obsolete Extensions
45.1 Byte Sizes o
45.2 TAB Format e
45.3 Hollerith Constants e
45.4 D (debug) lines in Fixed Source Form L
45.5 Increased Line Length in Fixed Source Form,
45.6 Increased Maximum Number of Continuation Lines
45.7 Intrinsic functions with mixed-kind arguments Lo oL oL oL
45.8 ACCESS=’APPEND’ specifier on OPEN statement o v i it et e
45.9 VAX FORTRAN TYPE statement o ittt et e e e e e
45.10Auto-skipping NAMELIST Input o v v v vttt et e e e e e e e
45.11Legacy Application Support L e
45.12Mismatched Argument Lists oL oL

45.13Double Precision Complex Extensions L o

Page 180

39
39
40
40
40
40
41
41
42
42

42

44
44
44
44
44
45
45

Detailed Contents

46 Intrinsic Module Overview 49
47 f90_gc 49
48 f90_iostat 51
49 f90_kind 52
50 f90_preconn_io 53
50.1 Procedures e 54
50.2 Example oL e e 54
51 f90_stat 54
51.1 Parameters e 54
51.2 Example oL e 55
52 f90_unix_* 55
53 ieee_*, iso_c_binding, iso_fortran_env 55
54 Posix Module Overview 56
55 f90_unix_dir 56
55.1 Parameters e e e 56
55.2 Procedures 56
56 f90_unix_dirent 58
56.1 Procedures 58
57 f90_unix_env 59
57.1 Parameters e 59
B7.2 TYPES . o o o e e e e e 60
57.3 Procedures 61
58 f90_unix_errno 64
58.1 Error Handling o L e 64
5.2 Parameters e 64
59 f90_unix_file 65
59.1 Parameters 65
59.2 TYPES . . o e 67
59.3 Procedures 68
60 f90_unix_io 70

Page 181

Detailed Contents

60.1

Procedures e e

61 f90_unix_proc

61.1
61.2

Parameters L e e

Procedures e e e e

62 Fortran 95 Program Structure

63 Fortran 95 Expressions

64 Fortran 95 Statements

65 Fortran 95 Intrinsic Procedures

66 Fortran 2003 Overview

67 Object-oriented programming

67.1

67.2
67.3
67.4

67.5
67.6

Type Extension e e e e
67.1.1 Extending Types [5.0] o o o
67.1.2 Polymorphic Variables [5.0] L
67.1.3 Type Selection [5.0]
67.1.4 Unlimited polymorphism [5.2]
67.1.5 Ad hoc type comparison [5.3]
Typed allocation [5.1] L e
Sourced allocation (cloning) [5.1]
Type-bound procedures [5.1] L L
67.4.1 The type-bound procedure part
67.4.2 Specific type-bound procedures Lo
67.4.3 Generic type-bound procedures
Abstract derived types [5.1]

Object-bound procedures [5.2] L

68 ALLOCATABLE extensions

68.1
68.2
68.3
68.4
68.5
68.6
68.7

Allocatable Dummy Arrays [4.X] o o
Allocatable Function Results [4.x] o o0
Allocatable Structure Components [4.X] L L
Allocatable Component Example e
The MOVE_ALLOC intrinsic subroutine [5.2]
Allocatable scalars [5.2]

Automatic reallocation [5.2]

Page 182

70
70
71

76

79

83

99

103

104
104
104
104
105
105
106
106
106
107
107
107
108
108
109

Detailed Contents

69 Other data-oriented enhancements 115
69.1 Parameterised derived types [6.0 for kind type parameters, 6.1 for length] 115
69.1.1 Basic Syntax and Semantics 116
69.1.2 More Semantics e e 117
69.1.3 Assumed type parameterso e e e e 117
69.1.4 Deferred type parameterso e 117

69.2 Finalisation [5.3] 118
69.3 The PROTECTED attribute [5.0] e 119
69.3.1 Symtaxo e 119
69.3.2 Semantics e e e 119
69.3.3 Example oL e 119

69.4 Pointer enhancements L L e 120
69.4.1 INTENT for pointers [5.1] 120
69.4.2 Pointer bounds specification [5.2] L L 120
69.4.3 Rank-remapping Pointer Assignment [5.0] L0 oo 120

69.5 Individual component accessibility [5.1] L 120
69.6 Public entities of private type [5.1] L 121
70 C interoperability [mostly 5.1] 121
70.1 The ISO_.C_BINDING module e e 121
70.1.1 The kind parameters L e e e 121
70.1.2 Using CPTR and C.FUNPTR oL i et e e e e e 122

70.2 BIND(C) types . . o v v v o o e e e 123
70.3 BIND(C) variables o 123
70.4 BIND(C) procedureso v it e 123
70.5 Enumerations e 124
71 IEEE arithmetic support [4.x except as otherwise noted] 124
71.1 Introduction L e 124
71.2 Exception flags, modes and information flow L L 125
71.3 Procedures in the modules L e 125
71.4 The IEEE_ FEATURES module e e e 125
71.5 IEEE_EXCEPTIONS o e 126
71.5.1 Types and constants L L e e e e 126
71.5.2 Procedures e e e e e 126

71.6 IEEE_ARITHMETIC module e 127
71.6.1 IEEE datatype selection e 127
71.6.2 Enquiry functions 128

Detailed Contents

71.6.3 Rounding mode e 129
71.6.4 Underflow mode 130
71.6.5 Number Classification 130
71.6.6 Test functions 131
71.6.7 Arithmetic functions oo 131

72 Input/output Features 132
72.1 Stream input/output [5.1] 132
72.2 The BLANK= and PAD= specifiers [5.1] i 133
72.3 Decimal Comma [5.1] 133
72.4 The DELIM= specifier [5.1] 133
72.5 The ENCODING= specifier [5.1] e 133
72.6 The IOMSG= specifier [5.1] e 133
72.7 The IOSTAT= specifier [5.1] 133
72.8 The SIGN= specifier [5.1] 134
72.9 Intrinsic functions for testing IOSTAT= values [5.1] 134
72.10Input/output of IEEE infinities and NaNs [5.1]o . Lo o 134
72.110utput of floating-point zero [5.1]. L 134
72.12NAMELIST and internal files [5.1] 134
72.13Variables permitted in NAMELIST e 134
72.14Recursive input/output [5.2] 135
72.15Asynchronous input/output L 135
72.15.1Basic syntax [5.1] Lo 135
72.15.2Basic Example L 135
72.15.3 The ASYNCHRONOUS attribute [5.2] o o o oo oo oo 136
72.15.4The WAIT statement [5.2] o 136
72.15.5Execution Semanticso L 137
72.16Scale factor followed by repeat count [5.1] 137
7217FLUSH statement [5.2] o o oo oo 137
72.18Defined input/output [6.2] 137
73 Miscellaneous Fortran 2003 Features 139
73.1 Abstract interfaces and the PROCEDURE statement [5.1] 139
73.2 Named procedure pointers [5.2] 139
73.3 Intrinsic modules [4.X] 140
73.4 Renaming user-defined operators on the USE statement [5.2] 140
73.5 The ISO.FORTRAN_ENV module [5.1] e 141
73.6 The IMPORT statement [5.1] o e 141

Page 184

Detailed Contents

73.7 Length of names and statements 141
73.8 Array constructor syntax enhancements 141
73.9 Structure constructor syntax enhancements [5.3] L Lo 142
73.10Deferred character length [5.2] 143
73.11The ERRMSG= specifier [5.1] o e 143
73.12Intrinsic functions in constant expressions [5.2 partial; 5.3 complete] Lo L. 143
73.13Specification functions can be recursive [6.2] L 143
73.14Access to the command line [5.1] 144
73.15Access to environment variables [5.1]o Lo 144
73.16Character kind selection [5.1] oL 145
73.17Argument passing relaxation [5.1]o oL 145
73.18The MAXLOC and MINLOC intrinsic functions [5.1] 145
73.19The VALUE attribute [4.X] 145
T3.19.1Syntax L e e e e e e 145
73.19.28emantics L e e e 145
73.19.3Example L e 145
73.20The VOLATILE attribute [5.0] 146
73.21Enhanced complex constants [5.2] 146
73.22The ASSOCIATE construct [5.2] 146
73.23Binary, octal and hexadecimal constants [5.2] L L 147
73.24Character sets [5.1; 5.3] L. 147
73.25Intrinsic function changes for 64-bit machines [5.2] L L L Lo Lo 147
73.26Miscellaneous intrinsic procedure changes [5.2] oL L Lo 147
74 Fortran 2008 Overview 148
75 SPMD programming with coarrays [6.2, 7.0] 148
T5.1 OVEIVIEW o o o e e 148
75.2 TMAages o o e e e 148
75.3 COAITAYS « . v v v v v v e e i e e et e e e e e e e 148
75.4 Declaring coarrays oL o e e e 149
75.5 Accessing coarrays on other images 149
75.6 Segments and synchronisation oL L e 149
75.7 Allocating and deallocating COarrays v v v v vt e e e e e e e e 150
75.8 Critical constructs e 151
75.9 Lock variables 151
75.10Atomic coarray aCcCesSiNgG e e e e e e e 152
75.11Normal termination of execution Lo 152

Detailed Contents

75.12Error termination L oL L e e e e e e 152
75.13Fault tolerance 152
75.14Detailed syntax of coarray featureso e 153
75.15Intrinsic procedures and COAITayS oL ot e e e e e e e 154

76 Data declaration [mostly 6.0] 156
77 Data usage and computation [mostly 5.3] 157
78 Execution control [mostly 6.0] 159
79 Intrinsic procedures and modules 160
79.1 Additional mathematical intrinsic functions [mostly 5.3.1] L. 160
79.2 Additional intrinsic functions for bit manipulation [mostly 5.3] L. 161
79.3 Other new intrinsic procedures [mostly 5.3.1] L Lo 162
79.4 Changes to existing intrinsic procedures [mostly 5.3.1] L L. 163
79.5 ISO_C_BINDING additions [6.2] o .o it 163
79.6 ISO_FORTRAN_ENV additions i e e e e e e e e e e e 164
80 Input/output extensions [mostly 5.3] 164
81 Programs and procedures [mostly 5.3] 165
82 Mixing Fortran and C 170
82.1 Naming Conventions 0 i e 170
82.2 Imitialisation and Termination Lo 170
82.3 Calling Conventions 0 i e 170
82.4 Data Types e e e 170
82.4.1 Pointers L e e 171

82.4.2 Derived types e e 171

82.4.3 Supporting types 171

82.5 SUBROUTINE return types« . . . o o i i it et e e e e e e e s e 172
82.5.1 SUBROUTINEs with label arguments 172

82.5.2 SUBROUTINEs with no label arguments 173

82.6 FUNCTION return types oo v ittt e e e e e e s e e e e s 173
82.6.1 Scalar 173

82.6.2 Scalar POINTER functions 173

82.6.3 Array non-POINTER functions i ittt e 173

82.6.4 Array POINTER functions. e e 173

82.7 Argument types e e e 174
82.7.1 CHARACTER EYPE . . « « o o oo oot e e e e e 174

Page 186

Detailed Contents

82.7.2 non-POINTER non-ALLOCATABLE Scalar 174

82.7.3 POINTER and ALLOCATABLE Scalar et 174

82.7.4 non-POINTER ATrray o i it ittt e e e e e e 174

82.7.5 POINTER AITAY o vt e it et e e e e e e 174

82.7.6 Procedures e 174

82.7.7 OPTIONAL arguments v i ittt e e e 175

83 ASCII Collating Sequence 176
83.1 Printing Characters L e 176
83.2 Non-printing Characters 177

Page 187

